

Testing Vitamin B12 Levels in Neuropathy, Alopecia, Dizziness, and Fatigue: A Rapid Review

Health Quality Ontario

February 2014

Evidence Development and Standards Branch at Health Quality Ontario

Suggested Citation

This report should be cited as follows:

Health Quality Ontario. Testing vitamin B12 levels in cases of neuropathy, alopecia, dizziness, and fatigue: a rapid review. Toronto: Health Quality Ontario; February 2014. 20 p. Available from: http://www.hqontario.ca/evidence/evidence-process/appropriateness-initiative#B12-other-conditions.

Permission Requests

All inquiries regarding permission to reproduce any content in Health Quality Ontario reports should be directed to <u>EvidenceInfo@hqontario.ca</u>.

How to Obtain Rapid Reviews From Health Quality Ontario

All rapid reviews are freely available in PDF format at the following URL: <u>http://www.hqontario.ca/evidence/publications-and-ohtac-recommendations/rapid-reviews.</u>

Conflict of Interest Statement

All reports prepared by the Evidence Development and Standards branch at Health Quality Ontario are impartial. There are no competing interests or conflicts of interest to declare.

Rapid Review Methodology

Rapid reviews are completed in very short time frames. Clinical questions are developed by the Evidence Development and Standards branch at Health Quality Ontario, in consultation with experts, end users, and/or applicants in the topic area. A systematic literature search is then conducted to identify relevant systematic reviews, health technology assessments, and meta-analyses; if none are located, the search is expanded to include randomized controlled trials and guidelines. Other publication types are not included. Systematic reviews are evaluated using a rating scale developed for this purpose. If a systematic review has evaluated the included primary studies using the GRADE Working Group criteria (http://www.gradeworkinggroup.org/index.htm), the results are reported and the rapid review process is complete. If the systematic review has not evaluated the primary studies using GRADE, the primary studies in the systematic review are retrieved and the GRADE criteria are applied to a maximum of 2 outcomes. All rapid reviews are developed and finalized in consultation with experts.

About Health Quality Ontario

Health Quality Ontario is an arms-length agency of the Ontario government. It is a partner and leader in transforming Ontario's health care system so that it can deliver a better experience of care, better outcomes for Ontarians, and better value for money.

Health Quality Ontario strives to promote health care that is supported by the best available scientific evidence. The Evidence Development and Standards branch works with expert advisory panels, clinical experts, scientific collaborators, and field evaluation partners to conduct evidence-based reviews that evaluate the effectiveness and cost-effectiveness of health interventions in Ontario.

Based on the evidence provided by Evidence Development and Standards and its partners, the Ontario Health Technology Advisory Committee—a standing advisory subcommittee of the Health Quality Ontario Board—makes recommendations about the uptake, diffusion, distribution, or removal of health interventions to Ontario's Ministry of Health and Long-Term Care, clinicians, health system leaders, and policy-makers.

Health Quality Ontario's research is published as part of the *Ontario Health Technology Assessment Series*, which is indexed in MEDLINE/PubMed, Excerpta Medica/Embase, and the Centre for Reviews and Dissemination database. Corresponding Ontario Health Technology Advisory Committee recommendations and other associated reports are also published on the Health Quality Ontario website. Visit <u>http://www.hqontario.ca</u> for more information.

About Health Quality Ontario Publications

To conduct its rapid reviews, Evidence Development and Standards and its research partners review the available scientific literature, making every effort to consider all relevant national and international research; collaborate with partners across relevant government branches; consult with expert advisory panels, clinical and other external experts, and developers of health technologies; and solicit any necessary supplemental information.

In addition, Evidence Development and Standards collects and analyzes information about how a health intervention fits within current practice and existing treatment alternatives. Details about the diffusion of the intervention into current health care practices in Ontario add an important dimension to the review. Information concerning the health benefits, economic and human resources, and ethical, regulatory, social, and legal issues relating to the intervention may be included to assist in making timely and relevant decisions to optimize patient outcomes.

Disclaimer

This rapid review is the work of the Division of Evidence Development and Standards branch at Health Quality Ontario, and is developed from analysis, interpretation, and comparison of published scientific research. It also incorporates, when available, Ontario data and information provided by experts. As this is a rapid review, it may not reflect all the available scientific research and is not intended as an exhaustive analysis. Health Quality Ontario assumes no responsibility for omissions or incomplete analysis resulting from its rapid reviews. In addition, it is possible that other relevant scientific findings may have been reported since completion of the review. This report is current as of the date of the literature search specified in the Research Methods section. Health Quality Ontario makes no representation that the literature search captured every publication that was or could be applicable to the subject matter of the report. This rapid review may be superseded by an updated publication on the same topic. Please check the Health Quality Ontario website for a list of all publications: http://www.hgontario.ca/evidence/publications-and-ohtac-recommendations.

Table of Contents

Background	5
Rapid Review	8
Research Question	8
Research Methods	8
Quality of Evidence	8
Results of Rapid Review	9
Conclusions	12
Acknowledgements	13
Appendices	14
Appendix 1: Literature Search Strategy	14
Appendix 2: GRADE Tables	16
References	18

Background

Overuse, underuse, and misuse of interventions are important concerns in health care and lead to individuals receiving unnecessary or inappropriate care. In April 2012, under the guidance of the Ontario Health Technology Advisory Committee's Appropriateness Working Group, Health Quality Ontario (HQO) launched its Appropriateness Initiative. The objective of this initiative is to develop a systematic framework for the ongoing identification, prioritization, and assessment of health interventions in Ontario for which there is possible misuse, overuse, or underuse.

For more information on HQO's Appropriateness Initiative, visit our website at www.hqontario.ca.

Objective of Analysis

The objective of this analysis is to identify the clinical utility of testing vitamin B12 levels in cases of neuropathy, alopecia, dizziness, and fatigue.

Clinical Need and Target Population

Vitamin B12 (cobalamin) is a water-soluble, essential vitamin. A deficiency in vitamin B12 can lead to a specific set of neurological disorders (subacute combined degeneration of the spinal cord, cognitive impairment) and one hematological disorder (megaloblastic anemia) disorders. Though it is unclear what the prevalence of vitamin B12 deficiency is in the general population, United States estimates indicate it to be between 2% and 6%. (1)

Based on a summary of studies, Kaferle and Strzoda (2) estimated that vitamin B12 deficiency was the cause of macrocytosis in 6% to 28% of the cases. However, not all cases of vitamin B12 deficiency are associated with macrocytosis or anemia, there may be other causes. The purpose of this rapid review is to determine if neuropathy, alopecia, dizziness or fatigue are associated with B12 deficiency. The 1988 studies by Carmel (3) and by Lindenbaum et al (4) noted that about 15% of patients can have low vitamin B12 levels without laboratory findings consistent with anemia or macrocytosis. This is referred to as subclinical B12 deficiency.

Ontario Context

In fiscal year 2010/2011, more than 2.9 million serum vitamin B12 laboratory tests were billed to the province at a cost of approximately \$40 million (Cdn). The number of vitamin B12 tests performed, particularly in the community setting, has increased since fiscal year 2005/2006 (Figure 1). In 2007, the serum vitamin B12 test was added to the laboratory requisition form that physicians use to request lab tests, and the number of tests increased by nearly 1 million between 2007 and 2008. The test was removed from the laboratory requisition form in November 2012. The volumes will be tracked by HQO in future years to see if there is a decrease in the volume of B12 tests.

Figure 1. Number of vitamin B12 tests in Ontario from FY 2005/2006 to 2010/2011

Diagnostic Accuracy of Serum Vitamin B12 Testing

In 2011, Willis et al (5) published a systematic review and meta-analysis of the diagnostic accuracy of tests for assessing vitamin B12. They searched the literature published from 1990 to 2009 and identified 54 studies for inclusion. They reported that no consistent reference standard was used to measure the accuracy of the serum vitamin B12 test, making it difficult to establish its accuracy, and that sensitivity and specificity varied across the studies. Sensitivity ranged from 13% to 75%, and specificity from 45% to 100%. Willis et al (5) attributed the wide ranges of sensitivity and specificity to the inconsistent use of a reference standard.

Hvas and Nexo (6) also published an article on the diagnostic accuracy for serum vitamin B12 testing. Although their review was not systematic, they described the strengths and weaknesses of each of the serum tests used to assess vitamin B12. Table 1 lists a summary of the tests based on their review. (6)

The National Health and Nutrition Examination Survey measures the health status of Americans. Part of the survey includes assessments of vitamin B12 biomarkers including cobalamin, methymalonic acid (MMA), and total homocysteine (Hcy). They established that, because of the challenges in sensitivity and specificity of tests, 2 tests (preferably cobalamin and MMA) should be performed when assessing vitamin B12 levels. They recommended MMA over total Hcy because Hcy also increases in the absence of other vitamins (folate and B6). (7;8)

Laboratory Test	Rationale for Test	Advantages	Disadvantages
Cobalamin	Decreases in vitamin B12 deficiency	Readily accessible test \$10–\$15 per test in Ontario Most commonly used test with the most literature about abnormal cutoffs	Sensitivity and specificity is unclear
MMA ^a	Increases with vitamin B12 deficiency	High sensitivity	Questionable specificity \$105 per test in Ontario
Hcy ^a	Increases with vitamin B12 deficiency	High sensitivity	Low specificity influenced by lifestyle factors (smoking, alcohol consumption, coffee consumption) ~\$65 per test in Ontario
Holotranscobalamin ^a	Decreases with vitamin B12 deficiency Newer test, clinical utility unclear	High sensitivity	Specificity unclear

Table 1. Summary of Laboratory Tests to Assess Serum Vitamin B12 Deficiency

Abbreviations: Hcy, total homocysteine; MMA, methymalonic acid; ^aThese laboratory tests are uninsured in community laboratories in Ontario. Source: Hvas and Nexo. (6)

Rapid Review

Research Question

What is the clinical utility of serum vitamin B12 testing in cases of neuropathy, alopecia, dizziness, or fatigue?

Research Methods

Literature Search

A literature search was performed on June 17, 2013, using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews for studies published from January 1, 2003, to June 17, 2013. (Appendix 1 provides details of the search strategies.) Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search.

Inclusion Criteria

- English language full-text publications
- published between January 1, 2003, and June 17, 2013
- systematic reviews, meta-analyses, guidelines, randomized controlled trials, observational studies
- studies assessing the clinical utility of testing serum vitamin B12 levels in patients with suspected neuropathy, alopecia, dizziness, or fatigue

Exclusion Criteria

- case reports, editorials, non-systematic reviews
- studies assessing the effectiveness of B12 supplementation in patients with confirmed neuropathy, alopecia, dizziness, or fatigue

Outcomes of Interest

• Serum vitamin B12 measurements

Quality of Evidence

The quality of the body of evidence for each outcome was examined according to the GRADE Working Group criteria. (9) The overall quality was determined to be very low, low, moderate, or high using a step-wise, structural methodology.

Study design was the first consideration; the starting assumption was that randomized controlled trials are high quality, whereas observational studies are low quality. Five additional factors—risk of bias, inconsistency, indirectness, imprecision, and publication bias—were then taken into account. Limitations in these areas resulted in downgrading the quality of evidence. Finally, 3 main factors that may raise the quality of evidence were considered: large magnitude of effect, dose response gradient, and accounting

for all residual confounding factors. (9) For more detailed information, please refer to the latest series of GRADE articles. (9)

As stated by the GRADE Working Group, the final quality score can be interpreted using the following definitions:

High	High confidence in the effect estimate—the true effect lies close to the estimate of the effect
Moderate	Moderate confidence in the effect estimate—the true effect is likely to be close to the estimate of the effect, but may be substantially different
Low	Low confidence in the effect estimate—the true effect may be substantially different from the estimate of the effect
Very Low	Very low confidence in the effect estimate—the true effect is likely to be substantially different from the estimate of effect

Results of Rapid Review

The database search yielded 1,970 citations published between January 1, 2003, and June 17, 2013 (with duplicates removed). Articles were excluded based on information in the title and abstract. The full texts of potentially relevant articles were obtained for further assessment.

Four studies (1 systematic review and 3 observational studies) met the inclusion criteria. The reference lists of the included studies and health technology assessment websites were hand searched to identify other relevant studies, and the 5 studies from the systematic review were also included for a total of 9 included citations. No studies on the clinical utility of serum vitamin B12 testing in cases of suspected dizziness or fatigue were found. Table 2 lists the number of studies found for each condition reviewed in this analysis.

Condition	Number of studies	Study design				
Neuropathy	8	1 systematic review (included 4 case series and 1 narrative review) 2 observational studies				
Alopecia	1	1 observational study				
Dizziness	0	N/A				
Fatigue	0	N/A				

Table 2. Studies Identified for the	Analysis
-------------------------------------	----------

Abbreviations: N/A, not applicable

Neuropathy

On behalf of the American Academy of Neurology, American Association of Neuromuscular and Electrodiagnostic Medicine and the American Academy of Physical Medicine and Rehabilitation, England et al (10) recommended that "screening laboratory tests may be considered for all patients with [distal symmetric polyneuropathy]," and that tests with the highest yield of abnormality are blood glucose, serum B12 (with MMA) and serum protein immunofixation electrophoresis. The recommendation, classified as Level C (defined as "possibly effective, ineffective or harmful for the given condition in the specified population") was based on evidence from the 5 studies summarized in Table 3. The studies found that between 1% and 5% of the patients with peripheral neuropathy have serum B12 levels indicating B12 deficiency. (11-15) As noted previously, the prevalence of B12 deficiency in the general population is estimated to be between 2% and 6%. (1)

Author, Year	Study Design	Participants with Neuropathy due to B12 Deficiency, n (%)	Results/Conclusion/Comment
Saperstein et al, 2003 (11)	Prospective case series	27 (8%) had neuropathy due to B12 deficiency; only 15 (5%) of these had elevated serum B12 levels, whereas the remaining 12 had normal B12 levels but abnormal MMA levels	Reviewed diagnostic work-up in 324 patients with peripheral neuropathy.
Johannsen et al, 2001 (12)	Prospective case series	3 (2%) due to nutrition deficiency—not specifically B12	Reviewed diagnostic work-up in 147 patients with chronic polyneuropathy. The cause of neuropathy was identified in 75% of patients, with the majority of diagnoses relating to diabetes or alcohol abuse.
Lubec et al, 1999 (13)	Retrospective case series	7 (4%)	Reviewed diagnostic work-up in 171 patients with peripheral neuropathy. They were able to define the cause of the neuropathy in 124 patients (73%).
Barohn, 1998 (14)	Narrative, non- systematic review	N/A	Summarizes testing that should be done in assessing neuropathy. Not a systematic review.
Fagius, 1983 (15)	Retrospective case series	1 (1%)	Reviewed diagnostic work-up in 91 patients with cryptogenic polyneuropathy. The cause of neuropathy was definite or probable in 8 patients (9%). Fagius concluded "The findings suggest that only a limited investigation is justified in most cases of chronic polyneuropathy without obvious cause."

Table 3. Summary of Studies That Contributed to the Recommendations by England et al (10)

Abbreviations: MMA, methymalonic acid; N/A, not applicable.

In addition to the 5 studies identified by England et al (10), 2 cross-sectional studies (16;17) on the clinical utility of vitamin B12 testing in patients with neuropathy were also found.

Hin et al ((16;17) assessed the association of B12 levels with cognitive impairment, depression, and neuropathy in 1,000 community dwelling people aged 75 years or older. Among the participants, 13% had low vitamin B12 levels. They concluded that "although symptoms of neuropathy were common in this age group, they were unrelated to low vitamin B12 concentrations" and that "there was no significant association of neuropathy with any of the laboratory measurements."

In 2012, Leishear et al (17) reported the results of a study of the relationship between B12 levels and peripheral nerve function in 2,287 older adults (aged 72–83 years). They found that 7.0% of the participants had B12 deficiency and 10.1% had subnormal B12 levels. No significant differences in peripheral neuropathy symptoms were found between participants with low B12 levels (includes B12 deficiency and subnormal B12 levels) and those with normal B12 levels.

The GRADE quality of evidence is very low.

Alopecia

Only 1 study on the association between vitamin B12 levels and alopecia was identified. (18) In 2013, Ertugrul et al (18) published a prospective study with contemporaneous controls comparing vitamin B12 levels in 75 patients with alopecia to 54 controls without alopecia. They did not find a significant difference in serum vitamin B12 levels between the patients and the controls (P = 0.735).

The GRADE quality of evidence is very low.

Dizziness

No studies were identified on the clinical utility of serum vitamin B12 levels and dizziness.

Fatigue

No studies were identified on the clinical utility of serum vitamin B12 levels and fatigue.

Conclusions

- There is very low quality evidence that there is no association between vitamin B12 levels and neuropathy.
- There is very low quality evidence that there is no association between low vitamin B12 levels and alopecia.
- There were no studies identified on the clinical utility of serum vitamin B12 testing in cases with dizziness or fatigue.

Acknowledgements

Editorial Staff

Joanna Odrowaz, BSc (Hons.)

Medical Information Services

Corinne Holubowich, BEd, MLIS

Clinical Expert Advisory Panel for Appropriate Utilization of Vitamin B-12 Testing for Neurocognitive-Based Indications

Panel Members	Affiliation(s)	Appointment(s)
Chair		
Dr. Joel Ray	St. Michael's Hospital/University of Toronto	Scientist/ Assistant Professor, Department of Medicine
Family Medicine		
Dr. Andrea Moser	Baycrest Health Services	Associate Medical Director
Geriatric Medicine		
Dr. Angeles Garcia	Queen's University	Professor, Department of Medicine
Neurology		
Dr. Stephen H. Pasternak	University of Western Ontario	Director, Cognitive Neurology & Alzheimer's Disease Research
Elizabeth Finger	University of Western Ontario	Assistant Professor, Clinical Neurological Sciences
Medial Biochemistry & Me	dical Genetics	
Dr. David E. C. Cole	University of Toronto	Professor, Laboratory Medicine & Pathobiology
Health Care System Repre	esentation	
Laurie Sweeting	Ministry of Health & Long Term Care	Senior Program Consultant

Appendices

Appendix 1: Literature Search Strategy

Search date: June 17, 2013

Databases searched: Ovid MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, CDSR, ACP Journal Club, DARE, CCTR, CLCMR, CLHTA, CLEED, CINAHL

Limits: 2003-current; English

Filters: none

Database: EBM Reviews - Cochrane Database of Systematic Reviews 2005 to April 2013, EBM Reviews - ACP Journal Club 1991 to May 2013, EBM Reviews - Database of Abstracts of Reviews of Effects 2nd Quarter 2013, EBM Reviews - Cochrane Central Register of Controlled Trials May 2013, EBM Reviews - Cochrane Methodology Register 3rd Quarter 2012, EBM Reviews - Health Technology Assessment 2nd Quarter 2013, EBM Reviews - NHS Economic Evaluation Database 2nd Quarter 2013, Embase 1980 to 2013 Week 24, Ovid MEDLINE(R) 1946 to June Week 1 2013, Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations June 14, 2013

#	Searches	Results
1	exp Vitamin B 12 Deficiency/ use mesz,acp,cctr,coch,clcmr,dare,clhta,cleed	9533
2	exp Vitamin B 12/df use mesz,acp,cctr,coch,clcmr,dare,clhta,cleed	20
3	Transcobalamins/df use mesz,acp,cctr,coch,clcmr,dare,clhta,cleed	114
4	exp Cyanocobalamin Deficiency/ use emez	6360
5	((b12 or b 12 or cyanocobalamin or cobalamin* or transcobalamin* or cobamide? or hydroxocobalamin or hydroxo-cobalamin or hydroxycobalamin) adj3 (deficien* or inadequa* or insufficien* or low blood level* or low serum level* or low plasma level* or suboptimal or sub-optimal or subnormal or sub-normal)).ti,ab.	9357
6	(an?emia* adj2 (addison* or pernicious* or megaloblastic)).ti,ab.	11238
7	or/1-6	26073
8	exp Vitamin B 12/ use mesz,acp,cctr,coch,clcmr,dare,clhta,cleed	18786
9	Transcobalamins/ use mesz,acp,cctr,coch,clcmr,dare,clhta,cleed	964
10	Transcobalamin/ use emez	614
11	Cyanocobalamin/ use emez	28781
12	(b12 or b 12 or cyanocobalamin or cobalamin* or transcobalamin* or cobamide? or hydroxocobalamin or hydroxo-cobalamin or hydroxycobalamin).ti,ab.	50994
13	or/8-12	68160
14	exp Peripheral Nervous System Diseases/ use mesz, acp, cctr, coch, clcmr, dare, clhta, cleed	123067
15	exp neuropathy/ use emez	342430
16	(neuropath* or neuritis or nerve disease* or nerve disorder* or pns disease* or (nervous system adj (disorder* or disease*)) or axonopath* or nerve dystroph* or neurodystroph*).ti,ab.	230709
17	exp Dizziness/	41789
18	(dizz?ness or orthostatis or light?headedness).ti,ab.	31421
19	exp Alopecia/	44083
20	(alopecia* or baldness or pseudopelade* or atrichosis or hairlessness or mucinosis follicular*).ti,ab.	29106
21	exp Fatigue/	137276
22	exp Fatigue Syndrome, Chronic/ use mesz,acp,cctr,coch,clcmr,dare,clhta,cleed	4569
23	(fatigue* or infectious mononucleosis like syndrome* or (myalgic adj encephalomyelitis) or royal free disease* or tiredness).ti,ab.	140163
24	or/14-23	875465
25	(7 or 13) and 24	4433
26	limit 25 to yr="2003 -Current" [Limit not valid in DARE; records were retained]	2532
27	limit 26 to english language [Limit not valid in CDSR, ACP Journal Club, DARE, CCTR, CLCMR; records were retained]	2282
28	remove duplicates from 27	1905

~I	NI A	ιц	
տ	INF	١П	ь.

#	Query	Results
S1	(MH "Vitamin B12 Deficiency+")	639
S2	((b12 or b 12 or cyanocobalamin or cobalamin* or transcobalamin* or cobamide? or hydroxocobalamin or hydroxo-cobalamin or hydroxycobalamin) N3 (deficien* or inadequa* or insufficien* or low blood level* or low serum level* or low plasma level* or suboptimal or sub-optimal or subnormal or sub-normal))	864
S3	(an?emia* N2 (addison* or pernicious* or megaloblastic))	283
S4	S1 OR S2 OR S3	1,067
S5	(MH "Vitamin B12")	2,064
S6	(b12 or b 12 or cyanocobalamin or cobalamin* or transcobalamin* or cobamide? or hydroxocobalamin or hydroxo-cobalamin or hydroxycobalamin)	3,651
S7	S5 OR S6	3,651
S8	S4 OR S7	3,789
S9	(MH "Peripheral Nervous System Diseases+")	23,684
S10	(neuropath* or neuritis or nerve disease* or nerve disorder* or pns disease* or (nervous system N1 (disorder* or disease*)) or axonopath* or nerve dystroph* or neurodystroph*)	23,522
S11	(MH "Dizziness")	1,239
S12	(dizz?ness or orthostatis or light?headedness)	2,844
S13	(MH "Alopecia")	1,170
S14	(alopecia* or baldness or pseudopelade* or atrichosis or hairlessness or mucinosis follicular*)	1,622
S15	(MH "Fatigue+")	11,272
S16	(fatigue* or infectious mononucleosis like syndrome* or (myalgic N1 encephalomyelitis) or royal free disease* or tiredness)	20,277
S17	S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16	61,065
S18	S8 AND S17	205
S19	S8 AND S17 Limiters - Published Date from: 20030101-20131231; English Language	179

Appendix 2: GRADE Tables

Table A1: GRADE Evidence Profile for the Clinical Utility of Serum Vitamin B12 Testing in Neuropathy and Alopecia

No. of Studies (Design)	Risk of Bias	Inconsistency	Indirectness	Imprecision	Publication Bias	Upgrade Considerations	Quality
Clinical utility of se	rum vitamin B12 tes	sting in patients wit	th neuropathy				
6 (observational) ^a	Serious limitations (- 1) ^b	No serious limitations	No serious limitations	No serious limitations	Undetected	None	⊕ Very Low
Clinical utility of se	rum vitamin B12 tes	sting in patients wit	th alopecia				
1 (observational)	No serious limitations	Serious limitations (-1)°	No serious limitations	No serious limitations	Undetected	Not sufficient to upgrade, but worth noting that this is a negative study	⊕ Very Low

^a Because the studies were extracted from the systematic review by England et al (10), the systematic review itself is not listed. Also, the narrative review by Barohn (14) is not included because it is not a primary study nor a systematic review.

^b No control groups.

^c As there was only 1 observational study, consistency could not be assessed.

Author, Year	Appropriate Eligibility Criteria	Appropriate Measurement of Exposure	Appropriate Measurement of Outcome	Adequate Control for Confounding	Complete Follow-Up
Ertugrul et al, 2013 (18) (alopecia)	No limitations	No limitations	No limitations	No limitations	No limitations
Leishear et al, 2012 (17) (neuropathy)	No limitations	No limitations	No limitations	Limitations ^a	No limitations
Hin et al, 2006 (16) (neuropathy)	No limitations	No limitations	No limitations	Limitations ^a	No limitations
Saperstein et al, 2003 (11) (neuropathy)	No limitations	No limitations	No limitations	Limitations ^a	No limitations
Johannsen et al, 2001 (12) (neuropathy)	No limitations	No limitations	No limitations	Limitations ^a	No limitations
Lubec et al, 1999 (13) (neuropathy)	No limitations	No limitations	No limitations	Limitations ^a	No limitations
Fagius, 1983 (15) (neuropathy)	No limitations	No limitations	No limitations	Limitations ^a	No limitations

Table 5: Risk of Bias Among Observational Trials for Clinical Utility of Serum Vitamin B12 Testing in Neuropathy and Alopecia

^a No control group.

References

- (1) McLean E, DeBenoist B, Allen LH. Review of the magnitude of folate and vitamin B12 deficiencies worldwide. Food Nutr Bull. 2008;29(2):S38-51.
- (2) Kaferle J, Strzoda CE. Evaluation of macrocytosis. Am Fam Physician. 2009;79(3):203-8.
- (3) Carmel R. Pernicious anemia. The expected findings of very low serum cobalamin levels, anemia, and macrocytosis are often lacking. Arch Intern Med. 1988;148(3):1712-4.
- (4) Lindenbaum J, Healton EB, Savage DG, Brust JCM, Garrett TJ, Podell ER, et al. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med. 1988;318:1720-8.
- (5) Willis CD, Elshaug AG, Milverton JL, Watt AM, Metz MP, Hiller JE. Diagnostic performance of serum cobalamin tests: a systematic review and meta-analysis. Pathology. 2011;43(5):472-81.
- (6) Hvas AM, Nexo E. Health technology assessment: A "must" for laboratory medicine? Scandinavian Journal of Clinical and Laboratory Investigation. 2003;63(5):317-8.
- (7) Bailey RL, Carmel R, Green R, Pfeiffer CM, Cogswell ME, Osterloh JD, et al. Monitoring of vitamin B-12 nutritional status in the United States by using plasma methylmalonic acid and serum vitamin B-12. Am J Clin Nutr. 2011;94(2):552-61.
- (8) Yetley EA, Pfeiffer CM, Phinney KW, Bailey RL, Blackmore S, Bock JL, et al. Biomarkers of vitamin B-12 status in NHANES: a roundtable summary. Am J Clin Nutr. 2011;94(1):313S-21S.
- (9) Guyatt GH, Oxman AD, Schunemann HJ, Tugwell P, Knottnerus A. GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol. 2011;64(4):380-2.
- (10) England JD, Gronseth GS, Franklin G, Carter GT, Kinsella LJ, Cohen JA, et al. Practice parameter: the evaluation of distal symmetric polyneuropathy: the role of laboratory and genetic testing (an evidence-based review). Report of the American Academy of Neurology, the American Association of Neuromuscular and Electrodiagnostic Medicine, and the American Academy of Physical Medicine and Rehabilitation. Neurology. 2009;72(2):185-92.
- (11) Saperstein DS, Wolfe GI, Gronseth GS, Nations SP, Herbelin LL, Bryan WW, et al. Challenges in the identification of cobalamin-deficiency polyneuropathy. Arch Neurol. 2003;60(9):1296-301.
- (12) Johannsen L, Smith T, Havsager AM, Madsen C, Kieldsen MJ, Dalsgaard NJ, et al. Evaluation of patients with symptoms suggestive of chronic polyneuropathy. J Clin Neuromuscul Dis. 2001;3(1):47-52.
- (13) Lubec D, Mullbacher W, Finsterer J, Mamoli B. Diagnostic work-up in peripheral neuropathy: an analysis of 171 cases. Postgrad Med J. 1999;75(4):723-7.
- (14) Barohn RJ. Approach to peripheral neuropathy and myopathy. Semin Neurol. 1998;18(1):7-18.
- (15) Fagius J. Chronic cryptogenic polyneuropathy. The search for a cause. Acta Neurol Scand. 1983;67(2):173-80.

- (16) Hin H, Clarke R, Sherliker P, Atoyebi W, Emmens K, Birks J, et al. Clinical relevance of low serum vitamin B12 concentrations in older people: The Banbury B12 study. Age Ageing. 2006;35(4):416-22.
- (17) Leishear K, Ferrucci L, Lauretani F, Boudreau RM, Studenski SA, Rosano C, et al. Vitamin B12 and homocysteine levels and 6-year change in peripheral nerve function and neurological signs. J Gerontol A Biol Sci Med Sci. 2012;67(5):537-43.
- (18) Ertugrul DT, Karadag AS, Takci Z, Bilgili.S.G., Ozkol HU, Tutal E, et al. Serum holotranscobalamine, vitamin B12, folic acid and homocysteine levels in alopecia areata patients. Cutan Ocul Toxicol. 2013;32(1):1-3.

Health Quality Ontario 130 Bloor Street West, 10th Floor Toronto, Ontario M5S 1N5 Tel: 416-323-6868 Toll Free: 1-866-623-6868 Fax: 416-323-9261 Email: <u>EvidenceInfo@hqontario.ca</u> www.hqontario.ca

© Queen's Printer for Ontario, 2014