Ontario Health Technology Assessment Series 2011; Vol. 11, No. 3

Clinical Utility of Serologic Testing for Celiac Disease in Asymptomatic Patients

An Evidence-Based Analysis

July 2011

Medical Advisory Secretariat Ministry of Health and Long-Term Care

Suggested Citation

This report should be cited as follows:

Medical Advisory Secretariat. Clinical utility of serologic testing for celiac disease in asymptomatic patients: an evidence-based analysis. Ont Health Technol Assess Ser [Internet]. 2011 July [cited YYYY MM DD]; 11(3) 1-63. Available from: http://www.health.gov.on.ca/english/providers/program/mas/tech/reviews/pdf/rev_celiac_disease_asymp tomatic_20110705.pdf

Permission Requests

All inquiries regarding permission to reproduce any content in the *Ontario Health Technology Assessment Series* should be directed to <u>MASinfo.moh@ontario.ca</u>.

How to Obtain Issues in the Ontario Health Technology Assessment Series

All reports in the *Ontario Health Technology Assessment Series* are freely available in PDF format at the following URL: <u>www.health.gov.on.ca/ohtas</u>.

Print copies can be obtained by contacting MASinfo.moh@ontario.ca.

Conflict of Interest Statement

All analyses in the Ontario Health Technology Assessment Series are impartial and subject to a systematic evidence-based assessment process. There are no competing interests or conflicts of interest to declare.

Peer Review

All Medical Advisory Secretariat analyses are subject to external expert peer review. Additionally, the public consultation process is also available to individuals wishing to comment on an analysis prior to finalization. For more information, please visit http://www.health.gov.on.ca/english/providers/program/ohtac/public_engage_overview.html.

Contact Information

The Medical Advisory Secretariat Ministry of Health and Long-Term Care 20 Dundas Street West, 10th floor Toronto, Ontario CANADA M5G 2C2 Email: <u>MASinfo.moh@ontario.ca</u> Telephone: 416-314-1092

ISSN 1915-7398 (Online) ISBN 978-1-4435-6964-4 (PDF)

About the Medical Advisory Secretariat

The Medical Advisory Secretariat is part of the Ontario Ministry of Health and Long-Term Care. The mandate of the Medical Advisory Secretariat is to provide evidence-based policy advice on the coordinated uptake of health services and new health technologies in Ontario to the Ministry of Health and Long-Term Care and to the healthcare system. The aim is to ensure that residents of Ontario have access to the best available new health technologies that will improve patient outcomes.

The Medical Advisory Secretariat also provides a secretariat function and evidence-based health technology policy analysis for review by the Ontario Health Technology Advisory Committee (OHTAC).

The Medical Advisory Secretariat conducts systematic reviews of scientific evidence and consultations with experts in the health care services community to produce the *Ontario Health Technology Assessment Series*.

About the Ontario Health Technology Assessment Series

To conduct its comprehensive analyses, the Medical Advisory Secretariat systematically reviews available scientific literature, collaborates with partners across relevant government branches, and consults with clinical and other external experts and manufacturers, and solicits any necessary advice to gather information. The Medical Advisory Secretariat makes every effort to ensure that all relevant research, nationally and internationally, is considered for the systematic literature reviews conducted.

The information gathered is the foundation of the evidence to determine if a technology is effective and safe for use in a particular clinical population or setting. Information is collected to understand how a new technology fits within current practice and treatment alternatives. Details of the technology's diffusion into current practice and input from practising medical experts and industry add important information to the review of the provision and delivery of the health technology in Ontario. Information concerning the health benefits; economic and human resources; and ethical, regulatory, social and legal issues relating to the technology assist policy makers to make timely and relevant decisions to optimize patient outcomes.

If you are aware of any current additional evidence to inform an existing evidence-based analysis, please contact the Medical Advisory Secretariat: MASinfo.moh@ontario.ca. The public consultation process is also available to individuals wishing to comment on an analysis prior to publication. For more information, please visit http://www.health.gov.on.ca/english/providers/program/ohtac/public_engage_overview.html.

Disclaimer

This evidence-based analysis was prepared by the Medical Advisory Secretariat, Ontario Ministry of Health and Long-Term Care, for the Ontario Health Technology Advisory Committee and developed from analysis, interpretation, and comparison of scientific research and/or technology assessments conducted by other organizations. It also incorporates, when available, Ontario data, and information provided by experts and applicants to the Medical Advisory Secretariat to inform the analysis. While every effort has been made to reflect all scientific research available, this document may not fully do so. Additionally, other relevant scientific findings may have been reported since completion of the review. This evidencebased analysis is current to the date of the literature review specified in the methods section. This analysis may be superseded by an updated publication on the same topic. Please check the Medical Advisory Secretariat Website for a list of all evidence-based analyses: <u>http://www.health.gov.on.ca/ohtas</u>.

Table of Contents

LIST OF ABBREVIATIONS	6
EXECUTIVE SUMMARY	7
Objective	
Clinical Need and Target Population	
Celiac Disease	7
Technology Under Evaluation	7
Serologic Tests for Celiac Disease	7
Research Questions	7
Research Methods	7
Study Population	
Search Strategy	
Inclusion Criteria	
Exclusion Criteria Outcomes of Interest	
Results of Evidence-Based Analysis	
Prevalence of Celiac Disease in Asymptomatic Patients	
The Effects of a Gluten-Free Diet on Disease-Specific Outcomes in Patients with Asymptomatic Celiac Disease	,
The effects of GFD on metabolic control in patients with asymptomatic celiac disease and Type 1 Dia The effects of a Gluten-Free Diet in Patients with Idiopathic Short Stature and Asymptomatic Celiac Disease	abetes 9
Risk of lymphoma in patients with asymptomatic celiac disease	
Risk of Asymptomatic Celiac Disease in Patients with Lymphoma	10
Risk of All-Cause Mortality in Patients with Asymptomatic Celiac Disease	
Grading of Evidence	
The Clinical Utility of Serologic Testing for Celiac Disease in Asymptomatic Subjects	
The Budget Impact of Serologic Testing for Celiac Disease in Asymptomatic Patients	11
Conclusions	11
BACKGROUND	12
Preamble	12
Objective of Analysis	12
Clinical Need and Target Population	12
Celiac Disease	12
Celiac Disease Diagnosis Guidelines	
Prevalence of Celiac Disease	
Ontario Context	
Technology under Review Serologic Tests for Celiac Disease	
Regulatory Status	
EVIDENCE-BASED ANALYSIS	15
List of non-gastrointestinal conditions evaluated in this report	15
Research Questions	15
Research Methods	15
Study Population	
Literature Search	16

Search Strategy	16
Inclusion Criteria	16
Exclusion Criteria	16
Outcomes of Interest	16
Statistical Analysis	17
Quality of Evidence	17
Results of Evidence-Based Analysis	19
Prevalence of Celiac Disease in Asymptomatic Patients	19
The Effects of a Gluten-Free Diet on Disease-Specific Outcomes in Patients with Asymptomatic Celiac	
Disease	
The effects of GFD on metabolic control in patients with asymptomatic celiac disease and Type 1 Dia The effects of a Gluten-Free Diet in Patients with Idiopathic Short Stature and Asymptomatic Celiac	abetes21
Disease	
The Risk of Lymphoma in Patients with Asymptomatic Celiac Disease	
Risk of lymphoma in patients with asymptomatic celiac disease	
Risk of asymptomatic celiac disease in patients with lymphoma	
The Risk of All-Cause Mortality in Patients with Asymptomatic Celiac Disease	
Grading of Evidence	40
The Clinical Utility of Serologic Testing for Celiac Disease in Asymptomatic Subjects	45
The Budget Impact of Serologic Testing for Celiac Disease in Asymptomatic Patients	45
Discussion	45
Conclusion	46
APPENDICES	47
Appendix 1: Previous OHTAC Recommendations on Serologic Testing for Celiac Disease in Subjects with Symptoms Consistent with this Disease	
Appendix 2: Literature Search Strategies	48
Appendix 3: Prevalence of Celiac Disease in Asymptomatic Patients Presenting with one of the Non-Gastrointestinal Conditions Evaluated	50
References	60

List of Abbreviations

AGA	Anti-gliadin antibody
AHRQ	Agency for Health Research and Quality
CD	Celiac disease
CI	Confidence interval(s)
DGP	Deamidated gliadin peptides
ELISA	Enzyme-linked immunosorbent assay
EMA	Endomysial antibody
GFD	Gluten-free diet
HbA1c	Hemoglobin A1c
HR	Hazard ratio
IgA	Immunoglobulin A
IgG	Immunoglobulin G
MAS	Medical Advisory Secretariat
OR	Odds ratio
OHTAC	Ontario Health Technology Advisory Committee
RR	Relative risk
SD	Standard deviation
SDS	Standard deviation score
SMR	Standardized mortality ratio
tTG	Tissue transglutaminase

Executive Summary

Objective

The objective of this evidence-based analysis was to evaluate the clinical utility of serologic testing for celiac disease in asymptomatic individuals presenting with one of the non-gastrointestinal conditions evaluated in this report. The clinical utility was based on the effects of a gluten-free diet (GFD) on outcomes specific to each of these conditions. The prevalence of celiac disease in asymptomatic individuals and one of these non-gastrointestinal conditions was also evaluated.

Clinical Need and Target Population

Celiac Disease

Celiac disease is an autoimmune disease characterized by a chronic inflammatory state of the proximal small bowel mucosa accompanied by structural and functional changes.

Technology Under Evaluation

Serologic Tests for Celiac Disease

There are a number of serologic tests for celiac disease available. Serologic tests are automated with the exception of the anti-endomysial antibody test, which is more time-consuming and operator-dependent than the other tests.

Research Questions

- 1. What is the prevalence of asymptomatic celiac disease in patients presenting with one of the non-gastrointestinal conditions evaluated?
- 2. What is the effect of the gluten-free diet on condition-specific outcomes in patients with asymptomatic celiac disease presenting with one of the non-gastrointestinal conditions evaluated?
- 3. What is the clinical utility of serologic testing for celiac disease in asymptomatic patients presenting with one of the non-gastrointestinal conditions evaluated? The clinical utility was defined as the impact of the GFD on disease specific outcomes.
- 4. What is the risk of all-cause mortality and lymphoma in individuals with asymptomatic celiac disease?
- 5. What is the budget impact of serologic testing for celiac disease in asymptomatic subjects presenting with one of the non-gastrointestinal conditions evaluated?

Research Methods

Study Population

The study population consisted of individuals with newly diagnosed celiac disease without any symptoms consistent with the disease presenting with one of the non-gastrointestinal conditions evaluated. When evaluating the risk of lymphoma and all-cause mortality, the study population consisted of asymptomatic individuals with a positive celiac disease serologic test and/or small bowel biopsy.

Celiac Disease Testing in Asymptomatic Patients - OHTAS 2011;11(3)

Literature Search

Search Strategy

Literature searches were performed for each disease/condition evaluated between December 2010 and March 2011 using OVID MEDLINE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA). No restrictions for start date of search were used.

Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, fulltext articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established.

Inclusion Criteria

- Studies, systematic reviews, and meta-analyses that assessed the effects of a GFD in patients with newly diagnosed asymptomatic celiac disease presenting with one of the non-gastrointestinal conditions evaluated. If symptoms were not reported in the study but subjects were identified through screening for celiac disease the study was included.
- Studies, systematic reviews, and meta-analyses that assessed the prevalence of newly diagnosed asymptomatic celiac disease in patients with one of the non-gastrointestinal conditions evaluated. If symptoms were not reported in the study but subjects were identified through screening for celiac disease the study was included.
- Studies, systematic reviews, and meta-analyses that evaluated the risk of all-cause mortality or lymphoma in individuals with asymptomatic celiac disease.
- Sample size ≥ 10 .
- Publications in English.

Exclusion Criteria

- Studies that retrospectively assessed the prevalence of asymptomatic celiac disease.
- Studies that reported the prevalence of one of the non-gastrointestinal conditions evaluated in subjects already diagnosed with celiac disease.
- Studies in individuals with one of the non-gastrointestinal conditions evaluated if the condition could be explained by other causes.
- Studies in subjects with celiac disease and symptoms consistent with the disease. If the study included individuals with and without symptoms consistent with celiac disease and their results were analysed separately, the results in individuals without symptoms were included in the analysis.
- Studies in which individuals did not report any symptoms consistent with celiac disease at study start but that either retrospectively reported the presence of such symptoms after following a GFD, or that previously presented with symptoms consistent with celiac disease.
- Study results published in letters to the editor or comments about other studies.
- Studies with a sample size ≥ 10 , however, in which less than 10 patients were included in the analysis.

Outcomes of Interest

The effects of a GFD on disease-specific outcomes for each condition evaluated in patients with asymptomatic celiac disease was assessed. The prevalence of asymptomatic celiac disease in patients

Celiac Disease Testing in Asymptomatic Patients - OHTAS 2011;11(3)

presenting with one of the conditions evaluated was also assessed.

Results of Evidence-Based Analysis

Three eligible observational studies evaluated the effects of GFD on growth parameters in subjects with asymptomatic celiac disease and idiopathic short stature. Four eligible observational studies evaluated the effects of GFD on metabolic control in subjects with asymptomatic celiac disease and type 1 diabetes. Five eligible observational studies evaluated the risk of all-cause mortality and five eligible observational studies on the effects of the GFD for the other conditions evaluated were identified. Twenty-three eligible studies measured the prevalence of asymptomatic celiac disease in subjects presenting with one of the conditions evaluated.

Prevalence of Celiac Disease in Asymptomatic Patients

The prevalence of celiac disease in asymptomatic patients presenting with one of the conditions evaluated was analysed. Most studies also included a control group that generally consisted of individuals randomly selected from the general population.

Although there was a trend to a higher prevalence of asymptomatic celiac disease in individuals with the conditions evaluated compared to the controls, it only reached statistical significance in type 1 diabetes. No eligible prevalence studies were identified in patients with amenorrhea, delayed puberty, alopecia, and depression.

The Effects of a Gluten-Free Diet on Disease-Specific Outcomes in Patients with Asymptomatic Celiac Disease

The effects of GFD on metabolic control in patients with asymptomatic celiac disease and Type 1 Diabetes

The effects of a GFD on metabolic control (HbA1c, number of hypoglycemic episodes, and changes in insulin dosage) in subjects with asymptomatic celiac disease and type 1 diabetes were evaluated.

One prospective case-control study reported an increase in HbA1c levels in cases with type 1 diabetes and asymptomatic celiac disease after the introduction of a GFD, however, the clinical significance of this change is unclear.

Only one eligible retrospective case-control study evaluated the effects of a GFD on hypoglycemia episodes and since there were inadequate details in the study about both the ascertainment and severity of hypoglycemia episodes in both cases and controls, it is not possible to draw conclusions regarding the effects of a GFD on hypoglycemia episodes based on this study.

One prospective case-control study did not show a statistically significant change in insulin dosage between cases with type 1 diabetes and asymptomatic celiac disease and controls with type 1 diabetes either before or after the introduction of a GFD.

No eligible studies that evaluated the effects of a GFD on the long-term outcomes of type 1 diabetes such as cardiovascular or renal events in patients with asymptomatic celiac disease were identified.

The effects of a Gluten-Free Diet in Patients with Idiopathic Short Stature and Asymptomatic Celiac Disease

A total of 3 eligible studies were identified. All studies consisted of case series that compared growth

parameters in subjects with asymptomatic celiac disease and idiopathic short stature before and after the celiac disease was diagnosed and the GFD was instituted.

Most subjects included in the studies demonstrated an improvement in growth parameters. Compliance with the GFD was not reported in the studies. The results of the studies suggest an increase in growth velocity in pediatric patients with asymptomatic celiac disease and idiopathic short stature once a GFD is introduced.

Risk of lymphoma in patients with asymptomatic celiac disease

One retrospective cohort study evaluated the risk of lymphoma in patients with asymptomatic celiac disease. The authors concluded that the number of events identified was low during the long follow-up period and that the risk of overall malignancies was not increased among patients with asymptomatic celiac disease.

Risk of Asymptomatic Celiac Disease in Patients with Lymphoma

Four case-control studies, one of which retrospective, evaluated the risk of asymptomatic celiac disease in patients newly diagnosed with lymphoma. One retrospective cohort study did not show an increase in the risk of lymphoma among subjects with asymptomatic celiac disease. Three prospective case-control studies did not find a statistically significant risk of asymptomatic celiac disease in patients with newly diagnosed lymphoma.

Risk of All-Cause Mortality in Patients with Asymptomatic Celiac Disease

A total of 5 studies that evaluated the risk of all-cause mortality in asymptomatic patients with celiac disease were identified. There were 5 cohort studies, 2 prospective and 3 retrospective. The two prospective studies did not show an increased risk of all-cause mortality in subjects with asymptomatic celiac disease.

Grading of Evidence

The quality of the evidence for each serologic tests evaluated based on the GRADE Working Group criteria. Overall, the quality of the evidence ranged from low to very low depending on the outcome evaluated.

The Clinical Utility of Serologic Testing for Celiac Disease in Asymptomatic Subjects

Eligible studies that evaluated the effects of a GFD on disease-specific outcomes were only identified for two of the conditions evaluated, type 1 diabetes and idiopathic short stature.

The clinical utility of serologic testing for celiac disease in patients with type 1 diabetes without symptoms consistent with celiac disease was not demonstrated since the studies identified did not provide evidence of the impact of the GFD on either metabolic control or long-term outcomes in these patients.

The clinical utility of serologic testing for celiac disease in patients with idiopathic short stature without symptoms consistent with celiac disease was demonstrated since the studies identified showed an acceleration in growth once the diagnosis of celiac disease was made and a GFD was introduced.

The Budget Impact of Serologic Testing for Celiac Disease in Asymptomatic Patients

The budget impact of serologic testing for celiac disease in asymptomatic patients was calculated for the conditions for which clinical utility for serologic testing was demonstrated. The budget impact in patients with idiopathic short stature without symptoms consistent with celiac disease was estimated as C\$552,000 as calculated by multiplying the number of individuals in Ontario with idiopathic short stature that may be eligible for the test by the cost of the serologic test for celiac disease.

Conclusions

- Based on a review of the literature, there is an increased risk of asymptomatic celiac disease in patients with type 1 diabetes.
- Based on low quality evidence, in patients with idiopathic short stature and asymptomatic celiac disease there is an acceleration in growth once a gluten-free diet is introduced.
- With the exception of idiopathic short stature, there was no published evidence of clinical utility of celiac disease testing in asymptomatic patients with respect to a gluten-free diet intervention in the other conditions evaluated.
- Based on low to very low quality evidence, asymptomatic celiac disease does not confer an increased risk of lymphoma or mortality.
- Similarly, in patients with lymphoma there is no increased risk of asymptomatic celiac disease.

Background

Preamble

An evidence-based analysis published in December 2010 by the Medical Advisory Secretariat (MAS) evaluated the clinical utility of different serologic tests used in the diagnosis of celiac disease in individuals with symptoms consistent with this disease. (1) The report concluded that the clinical validity and clinical utility of serologic tests for celiac disease was considered high in this population and that study findings suggest that IgA tTG is the most accurate and most cost-effective serologic test. (1)

The results of the evidence-based analysis performed by MAS (1) and the input from experts and the Citizen's Reference Panel on Health Technology were considered by the Ontario Health Technology Advisory Committee (OHTAC) in making recommendations regarding the use of serologic tests for celiac disease. (2) The recommendations made by OHTAC were specific to gastrointestinal indications, unexplained anemia unresponsive to iron supplementation, and dermatitis herpetiformis (Appendix 1). (2) However since testing in other non-gastrointestinal conditions in individuals without symptoms consistent with celiac disease¹ were raised by the Professional Panel, it was decided that a separate evidence-based analysis of these possible indications would be undertaken by MAS, which is the subject of this report.

Throughout the report, when "asymptomatic" celiac disease is mentioned, it refers to individuals with a positive serologic celiac disease test and/or characteristic abnormalities on a small bowel biopsy who never had symptoms consistent with celiac disease. (2)

Objective of Analysis

The objective of this evidence-based analysis was to evaluate the clinical utility of serologic testing for celiac disease in asymptomatic patients presenting with one of the non-gastrointestinal conditions evaluated in this report. The clinical utility was based on the effects of a gluten-free diet (GFD) on outcomes specific to each of these conditions. The prevalence of celiac disease in individuals without symptoms consistent with the disease presenting with one of these non-gastrointestinal conditions was also evaluated.

Clinical Need and Target Population

Celiac Disease

Celiac disease is an autoimmune disease characterized by a chronic inflammatory state of the proximal small bowel mucosa accompanied by structural and functional changes. (3) This results in impaired digestion and absorption of nutrients. (4) The immunological response is triggered by the ingestion of gluten. (3) Treatment consists of strict lifelong adherence to a gluten-free diet (GFD). (3) Symptoms improve with a GFD but recur when gluten-containing foods are restarted. (4)

Celiac disease may have different presentations:

^{• &}lt;sup>1</sup> * In Adults: chronic diarrhea especially in the presence of weight loss, abdominal pain, and/or unexplained iron-deficiency anemia unresponsive to iron supplementation.

In Pediatrics: Chronic diarrhea especially in the presence of failure to thrive or weight loss; severe constipation especially with poor weight gain.

In Adults and Pediatrics: Unexplained iron deficiency anemia unresponsive to iron supplementation, or subjects with dermatitis herpetiformis.

- Classic: patients present with gastrointestinal symptoms and the classic features of intestinal malabsorption with fully developed gluten-induced villous atrophy and other classic histologic features. (5)
- Atypical: patients present with little or no gastrointestinal symptoms. Presenting symptoms include iron deficiency anemia among others. Fully developed gluten-induced villous atrophy is present. (5)
- Silent: patients do not present clear gastrointestinal or atypical symptoms but present gluten-induced villous atrophy. (5)
- Latent: patients with a previous diagnosis of celiac disease who responded to a GFD and a normal small bowel mucosa. It may also include subjects with normal small bowel mucosa despite the ingestion of gluten but who may later develop celiac disease. (5)
- Refractory: patients diagnosed with celiac disease who do not respond to a GFD. This may be due to either lack of compliance or inadvertent consumption of gluten. However refractory celiac disease can occur in patients who develop ulcerative-jejunoileitis or enteropathy-associated T-cell lymphoma. (5)

Celiac Disease Diagnosis Guidelines

According to celiac disease guidelines, the diagnosis of celiac disease is established by small bowel biopsy. (6-8) Serologic tests are used to initially detect and to support the presence of celiac disease. (4;6-8) Different serologic tests for celiac disease are available: anti-gliadin antibody (AGA), anti-endomysial antibody (EMA), anti-tissue transglutaminase antibody (tTG), and anti-deamidated gliadin peptides antibody (DGP). (9) The diagnosis of celiac disease is confirmed by the presence of characteristic villous morphology abnormalities in the small bowel mucosa through a histological evaluation of small bowel biopsy specimens. (4;8)

The diagnosis of celiac disease must be performed on a gluten-containing diet since the small bowel abnormalities and the serologic antibody levels may resolve or improve on a GFD. (4)

Prevalence of Celiac Disease

General Population

The prevalence of celiac disease in studies included in the 2004 systematic review conducted by the Agency for Health Research and Quality (AHRQ) varied between 0.14% and 1.87%. (5) A pooled estimate was not calculated due to concerns with heterogeneity across studies, however the median prevalence reported across the studies was 0.47% [interquartile range (IQR) 0.25%, 0.71%]. (5) According to the authors of the 2004 AHRQ review the prevalence did not vary by age group, i.e., adults and children. (5)

Ontario Context

Serologic tests for celiac disease are available in both community and hospital laboratories in Ontario.

Technology under Review

Serologic Tests for Celiac Disease

There are a number of serologic tests for celiac disease available (table 2). Serologic tests are automated with the exception of the anti-endomysial antibody test, which is more time-consuming and operator-dependent than the other tests. (4;7)

Celiac Disease Testing in Asymptomatic Patients - OHTAS 2011;11(3)

For each serologic test, both immunoglobulin A (IgA) or G (IgG) can be measured, however, IgA measurement is the standard antibody measured in celiac disease. (4)

Table 2: Types of Serologic Celiac Disease Tests.

Serologic test	Type of assay
Anti-gliadin antibody (AGA) IgA and IgG	ELISA
Anti-endomysial antibody (EMA) IgA and IgG	Indirect immunofluorescence
Anti- tissue transglutaminase antibody (tTG) IgA and IgG	ELISA
Anti-deamidated gliadin peptides antibody (DGP)	ELISA

ELISA refers to enzyme-linked immunosorbent assay; Ig immunoglobulin

Regulatory Status

Diagnostic kits for the serologic tests for celiac disease listed in table 2 have been licensed by Health Canada. (10)

Evidence-Based Analysis

List of non-gastrointestinal conditions evaluated in this report

Table 3 provides the list of the non-gastrointestinal conditions evaluated in this report. These conditions were evaluated if they were unexplained by other causes. The list is based on the 2009 Clinical Practice Guidelines from The National Institute for Health and Clinical Excellence (NICE) (9) and expert opinion.

Conditions	Conditions continued
Unexplained amenorrhea	Unexplained short stature
Unexplained aphtous stomatitis	Unexplained infertility
Unexplained alopecia	Unexplained osteopenia or osteoporosis
Unexplained ataxia	Unexplained peripheral neuropathy
Unexplained chronic thrombocytopenia purpura	Unexplained recurrent miscarriages
Unexplained delayed puberty	Type 1 diabetes
Unexplained depression	Women with low birth weight infants unexplained by other causes

Research Questions

- 1. What is the prevalence of asymptomatic celiac disease in individuals presenting with one of the non-gastrointestinal conditions evaluated (see list on table 3)?
- 2. What is the effect of the gluten-free diet on condition-specific outcomes in patients with asymptomatic celiac disease presenting with one of the non-gastrointestinal conditions evaluated (see list on table 3)?
- 3. What is the clinical utility of serologic testing for celiac disease in asymptomatic patients presenting with one of the non-gastrointestinal conditions evaluated? The clinical utility was defined as the impact of the GFD on disease specific outcomes.
- 4. What is the risk of all-cause mortality and lymphoma in individuals with asymptomatic celiac disease?
- 5. What is the budget impact of serologic testing for celiac disease in asymptomatic patients presenting with one of the non-gastrointestinal conditions evaluated?

Research Methods

Study Population

The study population consisted of asymptomatic individuals with newly diagnosed celiac disease presenting with one of the non-gastrointestinal conditions evaluated. When evaluating the risk of lymphoma and all-cause mortality, the study population consisted of asymptomatic individuals with a positive celiac disease serologic test and/or characteristic abnormalities on small bowel biopsy.

Literature Search

Search Strategy

Literature searches were performed for each condition evaluated (table 3) between December 2010 and March 2011 using OVID MEDLINE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA). Search terms and end date for study publications for each search are provided in Appendix 2. No restrictions for start date of search were used.

Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, fulltext articles were obtained. Reference lists were also examined for any additional relevant studies not identified through the search. Articles with an unknown eligibility were reviewed with a second clinical epidemiologist and then a group of epidemiologists until consensus was established.

Inclusion Criteria

- Studies, systematic reviews, and meta-analyses that assessed the effects of a gluten-free diet in patients with newly diagnosed asymptomatic celiac disease presenting with one of the non-gastrointestinal conditions evaluated. If symptoms were not reported in the study but subjects were identified through screening for celiac disease the study was included.
- Studies, systematic reviews, and meta-analyses that assessed the prevalence of newly diagnosed asymptomatic celiac disease in subjects with one of the non-gastrointestinal conditions evaluated. If symptoms were not reported in the study but subjects were identified through screening for celiac disease the study was included.
- Studies, systematic reviews, and meta-analyses that evaluated the risk of all-cause mortality or lymphoma in individuals with asymptomatic celiac disease.
- Sample size ≥ 10 .
- Publications in English.

Exclusion Criteria

- Studies that retrospectively assessed the prevalence of asymptomatic celiac disease.
- Studies that reported the prevalence of one of the non-gastrointestinal conditions evaluated in subjects already diagnosed with celiac disease.
- Studies in individuals with one of the non-gastrointestinal conditions evaluated that if these conditions could be explained by other causes.
- Studies in subjects with celiac disease and symptoms consistent with the disease. If the study included both symptomatic and asymptomatic individuals and their results were analysed separately, the results in individuals without symptoms were included in the analysis.
- Studies in which individuals did not report any symptoms consistent with celiac disease at study start but that either retrospectively reported the presence of such symptoms after following a GFD, or that previously presented with symptoms consistent with celiac disease.
- Study results published in letters to the editor or comments about other studies.
- Studies with an initial sample size ≥ 10 , however, in which less than 10 patients were included in the analysis.

Outcomes of Interest

Outcomes specific to each condition included in this report were evaluated when analysing the effects of a GFD in asymptomatic subjects with a positive celiac disease serologic test and/or small bowel biopsy and

Celiac Disease Testing in Asymptomatic Patients - OHTAS 2011;11(3)

one of the conditions evaluated:

- Improvement in fertility
- Reduction of the risk of recurrent spontaneous abortions
- Reduction of the risk of low birth weight infants
- Improvement in epilepsy symptoms
- Improvement in peripheral neuropathy symptoms
- Improvement in ataxia symptoms
- Improvement in growth parameters in pediatric patients diagnosed with idiopathic short stature
- Improvement in bone health parameters in subjects with osteopenia or osteoporosis
- Delayed puberty
- Improvement of amenorrhea
- Reduction of the risk of recurrent aphtous stomatitis
- Improvement of metabolic control (HbA1c, changes in insulin dosage, and changes in the number of hypoglycemic episodes) in patients with type 1 diabetes
- Improvement of alopecia
- Improvement of depression
- Chronic idiopathic thrombocytopenic purpura

The following outcomes were also evaluated:

- Risk of lymphoma in patients with asymptomatic celiac disease
- Risk of all-cause mortality in patients with asymptomatic celiac disease
- Prevalence of newly diagnosed celiac disease in subjects with asymptomatic celiac disease and presenting with one of the non-gastrointestinal conditions evaluated.

Statistical Analysis

Changes in the outcomes listed above once a GFD was introduced and the risk of lymphoma and all-cause mortality in subjects with asymptomatic celiac disease were reported as published in the studies identified.

The pooled estimate of the prevalence of asymptomatic celiac disease in subjects with the conditions evaluated was calculated using the weighted average method. Comparisons in prevalence rates between individuals with one of the conditions evaluated and controls were performed with Review Manager 5 (version 5.0.025, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2008) using the Mantel Haenszel method.

In all analyses, the highest quality of evidence among the studies identified for each outcome was used. For instance, if both prospective and retrospective studies were identified for the same outcome, the data from prospective studies were used. For prevalence studies, only data from controlled studies were used unless controlled studies were not identified.

Quality of Evidence

The quality of the observational studies identified was determined based on the study design and risk of bias including subject recruitment, patient attrition, exposure and outcome definition, accounting for possible confounding. (11)

The quality of the body of evidence was assessed as high, moderate, low, or very low according to the GRADE Working Group criteria (12) as presented below.

1. Quality refers to the criteria such as the adequacy of allocation concealment, blinding and followup.

2. Consistency refers to the similarity of estimates of effect across studies. If there are important and unexplained inconsistencies in the results, our confidence in the estimate of effect for that outcome decreases. Differences in the direction of effect, the magnitude of the difference in effect, and the significance of the differences guide the decision about whether important inconsistency exists.

3. Directness refers to the extent to which the interventions and outcome measures are similar to those of interest.

As stated by the GRADE Working Group, the following definitions of quality were used in grading the quality of the evidence:

High Further research is very unlikely to change confidence in the estimate of effect.Moderate Further research is likely to have an important impact on confidence in the estimate of

effect and may change the estimate.

Low Further research is very likely to have an important impact on confidence in the estimate of effect and is likely to change the estimate.

Very Low Any estimate of effect is very uncertain

Results of Evidence-Based Analysis

Three eligible observational studies evaluated the effects of a GFD on growth parameters in patients with asymptomatic celiac disease and idiopathic short stature. (13-15) Four eligible observational studies evaluated the effects of GFD on metabolic control in patients with asymptomatic celiac disease and type 1 diabetes. (16-19) Five eligible observational studies evaluated the risk of all-cause mortality (20-24) and five eligible observational studies evaluated the risk of lymphoma in patients with asymptomatic celiac disease. (25-29) No eligible studies on the effects of the GFD for the other conditions evaluation were identified. Twenty-three eligible studies measured the prevalence of asymptomatic celiac disease in subjects presenting with the conditions evaluated. (14;30-51)

Study Design	Number of Eligible Studies
RCT Studies	
Systematic review of RCTs	
Large RCT	
Small RCT	
Observational Studies	
Systematic review of non-RCTs with contemporaneous controls	
Non-RCT with contemporaneous controls	14
Systematic review of non-RCTs with historical controls	
Non-RCT with historical controls	
Database, registry, or cross-sectional study (Cross-sectional, prevalence studies)	23
Case series	3
Retrospective review, modelling	
Studies presented at an international conference or other sources of grey literature	
Expert opinion	
Total	40
RCT refers to randomized controlled trial	

Table 4: Body of evidence examined according to study design

RCT refers to randomized controlled trial. Study classification based on Goodman et al. (52)

Prevalence of Celiac Disease in Asymptomatic Patients

The prevalence of celiac disease in asymptomatic patients presenting with one of the conditions evaluated was analysed. Most studies also included a control group that generally consisted of individuals randomly selected from the general population.

A weighted average of the prevalence of asymptomatic celiac disease both in individuals with the conditions evaluated and in the control group if available was calculated.

Celiac disease was diagnosed through serologic tests in all studies and confirmed by small bowel biopsy in some studies. Given the higher accuracy of the small bowel biopsy and the serologic tests IgA tTG and IgA EMA compared to IgA AGA, (1) only the prevalence results based on IgA tTG, IgA EMA, or small bowel biopsy were included in the analyses.

All studies evaluated the prevalence of asymptomatic celiac disease in a cross-sectional way. Table 5 shows the number of eligible studies identified and the pooled prevalence of asymptomatic celiac disease

for each condition evaluated. Additional details about individual studies are provided in Appendix 3.

No eligible prevalence studies were identified in patients with amenorrhea, delayed puberty, alopecia, and depression.

Canditian	N. Otudiaa		Drevelance of
Condition	N. Studies	Prevalence of Asymptomatic Gluten Sensitivity (patients with the	Prevalence of Asymptomatic
	Sample size (non- gastrointestinal conditions	conditions listed below)	Gluten Sensitivity
	/controls)		(Controls)
Infertility	3 cross-sectional	3.9%	1.0%
	N=297 / 506 (controls)	Not statistically significant vs. controls	
Recurrent	3 cross sectional	1.7%	1.0%
spontaneous abortion	N=131/ 506 (controls)	Not statistically significant vs. controls	
Women with low birth	1 cross sectional	9.3%	1.3%
weight infants	N=150 / 305 (controls)	Not statistically significant vs. controls	
Epilepsy	4 cross-sectional	1.8%	1.0%
	N=1648/6174 (controls)	Not statistically significant vs. controls	
Peripheral	1 cross-sectional	0	No comparative study
Neuropathy			
Ataxia	1 cross-sectional	3.1%	1.0%
	N=32 / 73 (controls)	Not statistically significant vs. controls	
Short Stature	6 cross-sectional	1.1%	No comparative study
	N=7492		
Osteopenia,	3 cross-sectional	4.3%	3.0%
Osteoporosis	N=318 / 2135 (controls)	Not statistically significant vs. controls	
Recurrent Aphtous	1 cross-sectional	4.8%	0
Stomatitis	N=41 / 49 (controls)	Not statistically significant vs. controls	
Type 1 Diabetes*	3 cross-sectional	8.9%	0.3%
	N=202 / 269 (controls)	Statistically Significant vs. controls Difference: 9% (95% Cl 5%, 14%)	
Chronic Idiopathic	1 cross-sectional	2.7%	0.6%
Thrombocytopenia Purpura	N=74 / 162 (controls)	Not statistically significant vs. controls	
Purpura	, , , , , , , , , , , , , , , , , , ,	Not statistically significant vs. controls	

Table 5: Prevalence of Asymptomatic Celiac Disease in Subjects with one of the Non-Gastrointestinal	
Conditions Evaluated	

* Studies published since 2005 were included

Although there was a trend to a higher prevalence of asymptomatic celiac disease in individuals with the conditions evaluated compared to the controls, it only reached statistical significance in type 1 diabetes.

The Effects of a Gluten-Free Diet on Disease-Specific Outcomes in Patients with Asymptomatic Celiac Disease

The effects of a GFD in individuals with one of the conditions evaluated and newly diagnosed asymptomatic celiac disease were examined.

Four eligible studies were identified in subjects with type 1 diabetes, (16-19) and three in subjects with idiopathic short stature. (13-15) No eligible studies were identified in subjects with any of the other

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

conditions evaluated.

The effects of GFD on metabolic control in patients with asymptomatic celiac disease and Type 1 Diabetes

The effects of a GFD on metabolic control (HbA1c, number of hypoglycemic episodes, and changes in insulin dosage) in subjects with asymptomatic celiac disease and type 1 diabetes were evaluated.

Four eligible studies evaluated the impact of a GFD on metabolic control in subjects with type 1 diabetes and asymptomatic celiac disease. (16-19) All studies had a case-control design, one was prospective, (17) and three were retrospective (16;18;19). All studies were in pediatric patients. (16-19) Subjects with type 1 diabetes being followed at the study clinics were recruited to participate in the studies. In all studies, cases were defined as subjects with type 1 diabetes who had a positive celiac disease serologic test and/or characteristic abnormalities on a small bowel biopsy at the start of the study without symptoms consistent with celiac disease. The diagnosis of celiac disease was made by serologic tests (IgA tTG, IgA EMA, IgA AGA) and confirmed by small bowel biopsy. (16;18;19) Controls were subjects with type 1 diabetes who had a negative serologic test for celiac disease at the start of the study. Controls were matched to cases by age, gender, and diabetes duration in three studies, (16;17;19) and by age and gender in one study. (18) A GFD was introduced in subjects who were diagnosed with celiac disease at the start of the study. The follow-up extended from up to 3 years before the diagnosis of celiac disease until up to 4 years after the diagnosis depending on the study. (16-19)

The sample size in each study ranged from 18 to 49 in cases and 26 to 58 among controls. (16-19) The mean age in the studies varied between 10 and 11 years. (16-19) Fifty-three to sixty-three percent of the subjects were girls, as reported in two studies (17;18), it wasn't reported in the other two studies. (16;19) The participation rate was not reported in the studies. In one study, 4 out of 27 (14.8%) subjects were withdrawn from the analysis due to incomplete medical records or because the celiac disease diagnosis was made before the type 1 diabetes diagnosis. (19) In one study 2 (10%) out of 20 cases were withdrawn due to the presence of other concomitant diagnosis. (16) No withdrawals were reported in two studies. (17;18) Compliance with a GFD was not reported in three studies. (16;18;19) The study by Sun et al. only included patients who complied with the GFD. (17)

The results of the studies are summarized below. Additional details in table 6.

Changes in HbA1c levels

One prospective (17) and three retrospective case-control studies (16;18;19) evaluated the changes in HbA1c levels.

The prospective study observed statistically significantly lower HbA1c levels in 18 cases compared to 26 controls from approximately 3 years before the celiac disease diagnosis until the time of diagnosis, i.e., 8.3% [standard deviation (SD) 1.1] vs. 8.7% (SD 0.9), p 0.02, respectively, at the time of celiac disease diagnosis. (17) The difference in HbA1c levels between cases and controls was not statistically significant at 1 and 2 years after the introduction of the GFD. (17)

Three retrospective case-control studies did not observe statistically significant differences in HbA1c levels between cases and controls either before (0 to 18 months) or after (1 to 4 years) the celiac disease diagnosis and GFD start. (16;18;19)

Number of Hypoglycemia Episodes

One retrospective case-control study compared the number of hypoglycemia episodes between cases and controls from 18 months before the diagnosis of celiac disease to 18 months after the diagnosis. (16) No details were provided with regards to how the hypoglycemia episodes were identified. The severity of

hypoglycemia episodes was not reported in the study. A total of 18 cases and 26 controls were included in the study. (16)

No statistically significant difference in the number of hypoglycemia episodes was observed between cases and controls between 18 and 6 months before the celiac disease diagnosis. (16) During the period ranging from 6 months before the diagnosis until 6 months after the diagnosis of celiac disease, the mean number of episodes was higher in cases (4.5, SD 4.0) compared to controls (2.0, SD 2.2), p=0.01. (16) After 6 months following the diagnosis of celiac disease and the introduction of the GFD, no statistically significant difference between cases and controls was observed. (16)

Additional details in table 6.

Insulin Dosage

Three case-control studies evaluated the changes in insulin dosage in cases and controls before and after the introduction of a GFD, 1 prospective (17) and 2 retrospective. (16;19)

The only prospective case control study did not find a statistically significant difference in insulin dosage between cases and controls either before or after the diagnosis of celiac disease and introduction of the GFD. (17) A retrospective case-control study did not observe a statistically significant difference in insulin dosage between cases and controls either before or after the diagnosis of celiac disease and the start of a GFD. (19) A second retrospective case-control study reported that the insulin dosage was similar between cases and controls 18 months before the diagnosis of celiac disease. (16) Thereafter, the insulin dosage decreased in cases with the lowest dosage at the time of diagnosis of celiac disease, although the difference between cases and controls was not statistically significant, p-value: 0.05. (16) After the diagnosis of celiac disease and introduction of the GFD, there was an increase in the insulin dosage in cases, and it was not statistically significantly different between cases and controls more than 6 months after the celiac disease diagnosis. (16)

Additional details about these studies in table 6.

Summary and Conclusions

One prospective case-control study reported an increase in HbA1c levels in cases with type 1 diabetes and asymptomatic celiac disease after the introduction of a GFD, (17) however, the clinical significance of this change is unclear.

Only one eligible retrospective case-control study evaluated the effects of a GFD on hypoglycemia episodes (16) and since there were inadequate details reported in the study about both the ascertainment and severity of hypoglycemia episodes in both cases and controls, it is not possible to draw conclusions regarding the effects of a GFD on hypoglycemia episodes based on this study.

One prospective case-control study did not show a statistically significant change in insulin dosage between cases with type 1 diabetes and asymptomatic celiac disease and controls with type 1 diabetes either before or after the introduction of a GFD. (17)

No eligible studies that evaluated the effects of a GFD on the long-term outcomes of type 1 diabetes such as cardiovascular or renal events in patients with asymptomatic celiac disease were identified.

Table 6: The Effects of a GFD on Type 1 Diabetes Metabolic Control in Patients with Asymptomatic Celiac Disease

Study Country N	Study Design Outcomes Recruitment	Patient Population Symptoms	Celiac Disease diagnosis criteria	Effects of GFD on HbA1c (GFD duration)	Effects of GFD on Hypoglycemia episodes (GFD duration)	Effects of GFD on insulin dose (GFD duration)
			Withdrawals GFD Compliance	N cases/controls	N cases/controls	N cases/controls
Mohn et al. (16) (2001) Italy N= 20 cases N=26 controls Pediatric	 Study design Retrospective case- control Power calculation: not reported Follow-up: 1.5 yrs Recruitment Cases and controls: type 1 diabetes patients followed at hospital clinics. Cases: patients diagnosed with CD Controls: subjects who tested negative for CD serology, matched to cases by age, gender and diabetes duration. Exclusion Criteria - Not reported 	Celiac Disease Symptoms 20 (100%) asymptomatic Patient Population <u>Mean Age</u> 11.0 (1.8-21.9) yrs <u>Girls</u> Not reported <u>Mean duration of type</u> <u>1 diabetes at CD</u> <u>diagnosis</u> 6.3 (1-19) yrs <u>Participation rate</u> Not reported	 Celiac Disease diagnosis Serology (IgA EMA, AGA) confirmed by small bowel biopsy Withdrawals 2 (10%) excluded due to other concomitant diagnoses GFD Compliance Not reported 	 N=18 (cases) / N=26 (controls) HbA1c (18 mos before CD diagnosis to 18 mos after CD diagnosis) No difference during f-up between cases and controls 	 N=18 (cases) / N=26 (controls) Hypoglycemia episodes 18 to 6 mos before CD diagnosis No significant difference between cases and controls 6 mos before CD diagnosis to 6 mos after CD diagnosis Cases: 4.5 ± 4 Controls: 2.0 ± 2.2 p.01 > 6 mos after CD diagnosis Not different between groups > 6 mos after GFD 	N=18 (cases) / N=26 (controls)Insulin requirement (18 mos before CD diagnosis to 18 mos after CD diagnosis)Cases vs. controls / before-afterSimilar between cases and controls 18 mos before CD diagnosis, decreased progressively thereafter in cases with the lowest point at the time of CD diagnosis $(0.6 \pm 0.2 \text{ vs. } 0.9 \pm 0.3 \text{ in}$ controls, p.05).Increase after start of GFD in cases.Not different between cases and controls > 6

Study Country N	Study Design Outcomes Recruitment	Patient Population Symptoms	Celiac Disease diagnosis criteria Withdrawals	Effects of GFD on HbA1c (GFD duration)	Effects of GFD on Hypoglycemia episodes (GFD duration)	Effects of GFD on insulin dose (GFD duration)
			GFD Compliance	N cases/controls	N cases/controls	N cases/controls
Goh et al. (18) (2010) US N=29 cases N=58 controls Pediatric	Study design Retrospective case- control Power calculation: not reported Follow-up: 1 yr Recruitment Cases and controls: patients with type 1 diabetes retrospectively identified through hospital database Cases: patients diagnosed with CD Controls: negative CD serology matched by age and gender to cases Exclusion Criteria Not reported	 Celiac Disease Symptoms Asymptomatic: 28 (100%) Patient Population Mean Age ± SD Cases: 10.2 ± 3.7 yrs Controls: 9.8 ± 3.8 yrs Girls Cases: 17 (60.7%) Controls 31 (53.4%) Mean diabetes duration ± SD Cases: 3.5 ± 3.32 yrs Controls: 4.8 ± 2.5 yrs Participation rate Not reported 	 Celiac Disease diagnosis Serology (IgA EMA, tTG), confirmed by small bowel biopsy Withdrawals None at 1 yr GFD Compliance Not reported 	 N=29 (cases) / N=58 (controls) Effects on HbA1c (1 yr) No statistically significant difference between cases and controls during the 12 mos before or after GFD 	Not evaluated	Not evaluated

Study Country N	Study Design Outcomes Recruitment	Patient Population Symptoms	Celiac Disease diagnosis criteria Withdrawals	Effects of GFD on HbA1c (GFD duration)	Effects of GFD on Hypoglycemia episodes (GFD duration)	Effects of GFD on insulin dose (GFD duration)
			GFD Compliance	N cases/controls	N cases/controls	N cases/controls
Sun et al. (17) (2009) UK N=49 cases N=49 controls Pediatric	Study design Case-control Power calculation: not reported Follow-up: 2 yrs Recruitment Caseas and controls: subjects < 16 yrs seen at diabetic clinics with type 1 diabetes Cases: positive CD serology on annual screening. Controls: negative CD serology, matched to cases by age, sex, and diabetes duration. Recruitment not described in detail. Exclusion Criteria - Refusal of biopsy - GFD refusal - Poor GFD compliance (defined by positive serology on GFD)	Celiac Disease Symptoms Asymptomatic: 49 (100%) Patient Population <u>Mean Age ± SD</u> cases: 11.9 ± 3.5 yrs controls: 11.9 ± 3.5 yrs controls: 11.9 ± 3.3 yrs <u>Girls</u> Cases: 31 (63.0%) Controls: 31 (63.0%) <u>Mean age at type 1</u> diabetes diagnosis <u>±SD</u> Cases: 6.0 ± 3.7 yrs controls: 6.0 ± 3.8 yrs <u>Mean age at CD</u> <u>diagnosis ±SD</u> Cases: 9.1 ± 3.7 yrs <u>Mean time between</u> <u>diabetes and CD</u> <u>diagnosis ±SD</u> 3.2 ± 2.8 yrs	 Celiac Disease diagnosis Serology (IgA EMA, tTG), confirmed by small bowel biopsy Withdrawals None GFD Compliance 100% 	N=49 (cases) / N=49 (controls) • Effects on HbA1c, %, ± SD (2 yrs) Controls: 8.7% ± 0.9 (mean during f-up) Before CD diagnosis (3.0 yrs before CD diagnosis to diagnosis) Cases: 8.3% ± 1.1, p .02 vs. controls At CD diagnosis CD-DM1: 8.4% ± 1.3, p < .001 vs. controls After CD diagnosis and start of GFD Cases: 8.9% ± 1.5 (1 yr) Cases: 8.7% ± 1.4 (2 yrs) Not significantly different from controls at baseline	Not evaluated	N=49 (cases) / N=49 (controls) • Insulin dose, U/kg/day, \pm SD (2 yrs) <u>Before CD diagnosis</u> (<u>baseline</u>) cases: 1.0 \pm 0.3 controls: 0.9 \pm 0.3 NS <u>After starting GFD</u> cases: 0.9 \pm 0.4 (1 yr) cases: 0.9 \pm 0.3 (2 yrs) NS vs. controls at baseline. No comparison among CD patients.
	serology on GFD)	3.2 ± 2.8 yrs <u>Participation rate</u> Not reported		from controls at daseline		

Study Country N	Study Design Outcomes Recruitment	Patient Population Symptoms	Celiac Disease diagnosis criteria	Effects of GFD on HbA1c (GFD duration)	Effects of GFD on Hypoglycemia episodes (GFD duration)	Effects of GFD on insulin dose (GFD duration)
			Withdrawals GFD Compliance	N cases/controls	N cases/controls	N cases/controls
Valletta et al. (19) (2007) Italy N=23 cases N=43 controls Pediatric	 Study design Retrospective case series, controlled Power calculation: not reported Follow-up: up to 4 yrs Recruitment Cases and controls: patients with type 1 diabetes followed at a clinic identified through chart review. Cases: patients diagnosed with CD Controls: patients with negative IgA AGA matched to cases by age, sex, duration of diabetes– Recruitment not described in detail. Exclusion Criteria - CD dx before diabetes - Incomplete medical records 	 Celiac Disease Symptoms Asymptomatic: 25/27 GI symptoms: 2/27 Patient Population (CD diagnosed) Mean age ± SD at CD diagnosis 12.2 ± 6.1 yrs Mean age at diabetes diagnosis ±SD 8.0 ± 3.3 yrs Girls Not reported Participation rate Not reported 	 Celiac Disease diagnosis Serology (IgA EMA, tTG, AGA), confirmed by small bowel biopsy Withdrawals 4/27 (14.8%) – incomplete records, celiac disease diagnosed before diabetes etc. GFD Compliance Not reported 	N= 23 (cases)/ N=43 (controls) • HbA1c (up to 4 yrs) No difference between patients and controls both at baseline and f-up According to graph, among cases, it seems that there was no significant difference during f-up.	Not evaluated	N= 23 (cases), N=43 (controls) • Insulin dosage (GFD up to 4 yrs) No difference between cases and controls both at baseline and follow-up.

AGA anti-gliadin antibody; CD celiac disease; EMA endomysial antibody; f-up follow-up; GFD gluten-free diet; mos months; Hb hemoglobin; mos months; NR not reported; NS not statistically significant; SD standard deviation; tTG tissue transglutaminase; U unit; yr year

The effects of a Gluten-Free Diet in Patients with Idiopathic Short Stature and Asymptomatic Celiac Disease

A total of 3 eligible studies were identified. (13-15) All studies consisted of case series that compared growth parameters in subjects with asymptomatic celiac disease and idiopathic short stature before and after the celiac disease was diagnosed and the GFD was instituted. (13-15) The sample size in each study ranged from 10 to 29 subjects. (13-15) The patient population consisted of pediatric patients with idiopathic short stature who had been referred to the study site for evaluation of celiac disease. (13-15) The number of patients who refused to participate in the study was not reported in the studies.

Short stature was defined as height $< 3^{rd}$ percentile for age and gender in all three studies. (13-15) The short stature was idiopathic or had no endocrine causes. (13-15) Celiac disease was diagnosed by small bowel biopsy at the start of the study in all studies. (13-15)The outcomes evaluated were changes in growth velocity (cm/year) standard deviation score (13;14) and changes in growth standard deviation score (SDS) according to chronological age. (15)

The mean age of the subjects included in the studies varied between 8.4 and 12.1 years. (13-15) Between 25% and 65.5% of the subjects were female. The duration of follow-up on a GFD varied between 6 months and 3 years in two studies, (14;15) and it wasn't clear in one study. (13)

Most subjects demonstrated an improvement in growth parameters (table 7). Compliance with the GFD was not reported in the studies. In one study, 6 out of 16 subjects (37.5%) were excluded from the analysis as they were not followed after the introduction of the GFD. (14) Withdrawals were not reported in the other two studies. (13;15)

The results of the studies suggest an increase in growth velocity in pediatric patients with asymptomatic celiac disease and idiopathic short stature once a GFD is introduced.

Additional information in table 7.

Study Country N	Study Design Outcomes Recruitment	Patient Population Symptoms	Celiac Disease diagnosis criteria Short Stature definition	Withdrawals GFD compliance	Effects of GFD
Cacciari et al. (14) (1985) Italy N= 104	 Study design Case Series, before-after comparison F-up: 3 to 33 mos Recruitment All children with short stature and CD with positive small bowel biopsy but no GI symptoms who attended the pediatric clinic. 	Symptoms No GI symptoms Patient Characteristics Idiopathic short stature: 88/104 (84.6%) <u>Mean age:</u> 9.4 to 13.4 yrs (2.8- 16.8) <u>Bone age delay (% of chronologic age): 16.6% - 28.2% Participation rate Not reported </u>	 Celiac disease diagnosis Serology (AGA) confirmed by small bowel biopsy Short stature definition 3rd percentile 	 Withdrawals 6/16 (37.5%) – not followed after GFD. GFD Compliance Not reported 	Effect of GFD on height velocity SDS N=10 Improvement: 6/10 (60.0%) GFD duration: 6-33 mos Statistical significance of changes not provided <u>Mean Height velocity SDS</u> (range), N=9 Before GFD: -1.81 (-1.2 to 2.4) After GFD: +0.49 (-5.0 to 6.7) GFD duration: 3 to 12 mos*
Bonamico et al. (13)(1992) Italy N=29	Study design Case series, before-after comparison F-up: unclear Recruitment Children with short stature and CD with positive small bowel biopsy and no GI symptoms referred to the endocrinology clinic. No somatic, cardiac, or renal malformations or chromosomal abnormalities	Symptoms No GI symptoms Patient Characteristics <u>Mean age</u> : 8.4 yrs ± 3.1 <u>Growth velocity</u> : from -2 SD below average to 25 th percentile <u>Growth delay SD, mean (range)</u> : -2.7 SD (-2, 3.7) <u>GH deficiency</u> : 5/14 (36%) Participation rate Not reported	 Celiac disease diagnosis Small bowel biopsy Short stature definition Height < 3rd percentile 	 Withdrawals GFD Compliance Not reported 	Effect of GFD on growth velocity N=29 29/29 (100%) significant acceleration of growth velocity <u>Growth velocity</u> Before GFD: -2.3 SD Post GFD: + 3.7 SD GFD duration: not clear

Table 7: The Effects of a GFD on Idiopathic Short Stature in Patients with Asymptomatic Celiac Disease

Study Country N	Study Design Outcomes Recruitment	Patient Population Symptoms	Celiac Disease diagnosis criteria Short Stature definition	Withdrawals GFD compliance	Effects of GFD
Cacciari et al. (15) (1991) Italy N=11	 Study design Case series, before-after comparison F-up: 3 yrs Recruitment Children with short stature diagnosed with CD (positive biopsy and AGA serology) and no GI symptoms. 	Symptoms No GI symptoms Patient Characteristics <u>Mean chronological age</u> Male: 12.1 yrs (6.2-19.2) Female: 11.7 yrs (9.6-15) <u>Mean bone age</u> Male: 8.9 yrs (3.8-14) Female: 9.9 yrs (7.5-11.7) Participation rate Not reported	 Celiac disease diagnosis Small bowel biopsy Short stature definition Height < 3rd percentile 	 Withdrawals Not reported GFD Compliance Not reported 	 Effect of GFD on growth, GFD duration: 3 yrs N=11 Mean chronological age height SDS ± SD: Baseline: -2.52 ± 0.83 Yr 1: -2.23 ± 0.77 Yr 2: -1.99 ± 0.80 Yr 3: -1.69 ± 0.87 p value not reported

AGA antigliadin antibody; CD celiac disease; f-up follow-up; GFD gluten-free diet; GH growth hormone; GI gastrointestinal; mos months; SD standard deviation; SDS standard deviation score; yr year

* 1st evaluation reported in the publication was used in this table

The Risk of Lymphoma in Patients with Asymptomatic Celiac Disease

Five studies that evaluated the association between lymphoma and asymptomatic celiac disease were identified. (25-29) There was one retrospective cohort study, (26) 3 case-control, (25;27;29) and 1 retrospective case-control study. (28) The retrospective cohort study evaluated the risk of lymphoma in subjects with asymptomatic celiac disease. (26) The case-control studies evaluated the risk of asymptomatic celiac disease in subjects with newly diagnosed lymphoma.

Risk of lymphoma in patients with asymptomatic celiac disease

One retrospective cohort study evaluated the risk of lymphoma in subjects with asymptomatic celiac disease. (26)

A total of 6,849 subjects originally recruited from the general population to participate in a populationbased survey conducted between 1978 and 1980 were included in the retrospective cohort by Lohi et al. (26) Celiac disease was diagnosed in 2001 using serologic tests, IgA tTg or IgA EMA using serum stored at the time of recruitment (1978-1980). (26) The outcome, non-Hodgkin's lymphoma (NHL), was identified through a national cancer database during a follow-up of 19 years. (26) The relative risk (RR) of NHL among individuals who tested positive for celiac disease compared to individuals who tested negative was calculated through a Cox regression model adjusted for age and sex. (26) A total of 202 asymptomatic subjects had a positive IgA tTG serologic test and 73 patients had a positive IgA EMA serologic test. (26) The mean age was 59.1 years (SD 14.2) among IgA tTG-positive individuals, 50.6 (SD 13.9) among IgA tTG-negative individuals, 49.3 years (SD 11.9) among IgA EMA-positive individuals, and 50.8 years (SD 14.0) among IgA EMA-negative individuals. (26)

A total of 3 NHL cases were reported among the 202 IgA tTG-identified patients vs. 28 among 6,647 IgA tTG negative individuals, RR 2.76 (95% CI: 0.83, 9.16). (26) A total of 2 NHL cases were reported among 73 IgA EMA-positive individuals, vs. 29 among 6,776 IgA EMA-negative individuals, RR 5.94 (1.41, 25.04). (26) Therefore, during up to 19 years of follow-up, there was no statistically significantly increase in the risk of lymphoma in IgA-tTG-identified individuals, however the risk was statistically significant among IgA-EMA-identified individuals. (26) The total follow-up time was 103,815 patient-years, there were therefore 2.9 lymphoma cases per 100,000 person-years if diagnosed through IgA tTG and 1.9/100,000 if diagnosed through IgA EMA. (26) The authors concluded that the number of events identified was low during the long follow-up period and that the risk of overall malignancies was not increased among celiac disease patients assessed by serology. The authors did not comment on the fact that the risk of NHL was higher in subjects with positive IgA EMA serology but not with positive IgA tTG serology compared to subjects with negative celiac disease serology. However, this could be due to imprecision given the very small number of events, i.e., 3 NHL cases among IgA EMA positive subjects, and 2 NHL cases among IgA tTG positive subjects. No information on GFD was provided.

Additional information in table 8.

Table 8: Risk of Lymphoma in Patients with Asymptomatic Celiac Disease

Study N Follow-up	Study Design Statistical Analysis	Patient Population Symptoms	Celiac disease diagnosis Lymphoma diagnosis criteria	RR (95% CI) Lymphoma (celiac disease vs. control)	Site of lymphoma GFD	Participation Rate Withdrawals
Lohi et al. (26) (2009) N= 6,849 202 CD (IgA tTG) 73 CD (IgA EMA) 6,647 controls Period: 1978-1996	Study Design Retrospective cohort F-up: up to 19 yrs Recruitment Sample of general population with positive serologic celiac disease test identified through population-based health survey used. No previous CD or malignancy diagnosis. Controls: subjects from the same cohort with negative serology or positive only to 1st IgA tTG Analysis Cox regression. RR age and sex adjusted	 Asymptomatic Celiac disease Mean age ± SD: 59.1 ± 14.2 yrs (tTG) 49.3 ± 11.9 yrs (EMA) Female: 61.4% (tTG) 71.6% (EMA) Controls Mean age ± SD: 50.6 yrs Female: 53.5% 	 CD diagnosis Serology (positive in 2 tests, either 2 IgA tTG or 1 IgA tTG and IgA EMA) Lymphoma diagnosis Malignancies extracted from the national cancer registry 	• Risk of NHL <u>Among IgA tTG positive</u> RR: 2.92 (0.87, 9.74) Events: 3 <u>Among IgA EMA positive</u> RR: 6.43 (1.52, 27.22) Events: 2	 Lymphoma location: Groin, low extremities, tonsils, skin, esophagus GFD during f-up Not reported 	 90% agreed to participate 87% with blood sample CD or cancer diagnosis beteween 1978- 1980 excluded (n=144, 2.1%)

CD celiac disease; CI confidence interval; EMA endomysial antibody; f-up follow-up; GFD gluten-free diet; IgA immunoglobulin A; NHL non-Hodgkin's lymphoma OR odds ratio; SD standard deviation; tTG tissue transglutaminase

Risk of asymptomatic celiac disease in patients with lymphoma

Four case-control studies, (25;27-29) one of which retrospective, (28) evaluated the risk of asymptomatic celiac disease in patients newly diagnosed with lymphoma.

Celiac disease was diagnosed through serologic tests and confirmed by small bowel biopsy in three studies (25;27;29) and small bowel biopsy in one study. (28)

Cases consisted of patients with newly diagnosed lymphoma who were diagnosed with asymptomatic celiac disease at the start of the study. (25;27-29) The control group consisted of a sample of the general population that had a negative serologic test for celiac disease. (25;27-29) In all studies identified, celiac disease was diagnosed at the same time as the lymphoma, therefore the effects of GFD in the development of lymphoma were not evaluated. The studies included only adult patients. (25;27-29)

The studies are described below, additional details in table 9.

In a multicentre case-control study by Mearin et al., adult patients newly diagnosed with NHL at referral centres in Europe between 1998 and 2001 were included. (25) Controls were subjects representing the general population identified either through celiac disease mass screening programs, blood donors, or subjects attending outpatient services, depending on the country and study site. (25) A total of 1,471 cases and 9,676 controls were included. (25) Celiac disease was diagnosed using IgA EMA, and a positive serology was confirmed by small bowel biopsy. (25) The odds ratio of asymptomatic celiac disease in patients with newly diagnosed NHL vs. controls was calculated using unmatched logistic regression adjusted for age and sex. (25) The mean age of cases and controls was 59 and 60 years, respectively. (25) A total of 4 asymptomatic celiac disease cases were identified through screening of NHL cases and 38 in controls, odds ratio (OR) of asymptomatic celiac disease in patients with newly diagnosed NHL was 1.3 (95% CI: 0.6, 2.7). (25) The authors stated that the risk of NHL was not increased in subjects with asymptomatic celiac disease, and that asymptomatic celiac disease is rare in patients with NHL. (25)

In a case-control study by Farre et al., consecutive newly diagnosed patients with lymphoid malignancy were included between 1998 and 2000. (29) Controls were hospitalized subjects matched to cases by age, gender and study site. (29) A total of 298 cases and 251 controls were included. (29) The mean age was 58 years in cases and 55 years in controls. (29) The diagnosis of celiac diseased was performed by serology (IgA tTG, IgA EMA). (29) Subjects with either clinical symptoms or a positive IgA EMA underwent small bowel biopsy to confirm the diagnosis. (29) The OR of celiac disease in patients with lymphoma vs. controls was calculated using logistic regression. (29) Asymptomatic celiac disease was diagnosed in one patient with lymphoma and one control. (29) The results were not stratified according to celiac disease presentation, i.e., asymptomatic or symptomatic, but the authors concluded that there was no increased risk of lymphoma in either asymptomatic or symptomatic lymphoma, OR 0.62 (95% CI: 0.10, 3.79). (29)

Catassi et al. performed a case-control study including consecutive NHL cases newly diagnosed between 1996 and 1990 at the study sites. (27) Controls were selected from two population-based studies on mass celiac disease screening. (27) Celiac disease was diagnosed by serology (IgA EMA) and confirmed by small bowel biopsy. (27) The odds ratio of celiac disease in cases vs. controls was calculated by Mantel Haenszel analysis adjusted by age and gender. (27) There were 653 cases and 5,720 controls. (27) The median age was 57 years in cases (not reported in controls). (27) Celiac disease was diagnosed in 6 cases, 2 of which were diagnosed through screening at the same time as the NHL, which were therefore classified by the authors as asymptomatic. (27) Celiac disease was diagnosed in 24 controls. (27) The authors did not provide separate results by celiac disease presentation, i.e., asymptomatic or not, however they state in a different publication that the rate of NHL in asymptomatic celiac disease, 2/653, was lower

than expected in the overall general population, 1/100-200. (53)

Johnston et al. through a retrospective review of a pathology records database identified cases of lymphoma of the small intestine diagnosed between 1987 and 1996. (28) The pathology records database was also searched to identify small bowel biopsy reports with the diagnosis of celiac disease in the cases of small intestine lymphoma. (28) No information was provided about how the decision to perform a small bowel biopsy was made, i.e., whether all patients with lymphoma were investigated for celiac disease, if it was randomly performed among cases, or if only selected cases were tested for celiac disease. Controls of the general population were used, however no details were provided about how the controls were identified and tested for celiac disease. The OR of asymptomatic celiac disease in cases with small bowel lymphoma vs. controls was calculated, however no details were provided on the methods used for the analysis. (28) There were 138 cases and 1,823 controls. (28) Twelve patients were diagnosed with asymptomatic celiac disease among cases and 15 patients among controls, OR 15.7 (95% CI 9.7, 25.5). (28) The authors concluded that although celiac disease was significantly associated with lymphoma the risk to the patient is low, i.e., approximately 1/1,000 patients over a 10-year period and that the data is not sufficient to confirm the increased risk of small bowel lymphoma in patients with celiac disease. (28) The study does not provide details about the diagnosis of celiac disease in cases, i.e., being a retrospective study it is not clear testing for celiac disease was performed routinely or selectively in small bowel lymphoma cases. This could lead to detection bias if cases of small bowel lymphoma are more thoroughly screened for celiac disease than controls. Similarly, no information is provided about the diagnosis of celiac disease in the control group. Moreover, the baseline characteristics in cases and controls were not provided and the results do not seem to be adjusted for potential confounders, which makes it difficult to interpret their findings.

In conclusion one retrospective cohort study did not show an increase in the risk of lymphoma among subjects with asymptomatic celiac disease. (26) Three prospective case-control studies did not find a significant risk of asymptomatic celiac disease in cases with newly diagnosed lymphoma. (25;27;29)

Study N Follow-up	Study Design Statistical Analysis	Patient Population Symptoms	Celiac disease diagnosis Lymphoma diagnosis criteria	OR (95% CI) Risk of celiac disease in lymphoma	Site of lymphoma GFD	Participation Rate Withdrawals
Mearin et al. (25) (2006) N= 1,444 (NHL)	Study Design Case-Control Multinational Mean f-up: N/A, exposure and outcome measured at	 Cases Mean age: 59 yrs (overall, not only screening-identified) Female: 49% Controls Mean age: 60 yrs 	CD diagnosis Serology (IgA EMA) confirmed by biopsy	• Celiac disease among NHL OR: 1.3 (0.6, 2.7) N of asymptomatic CD: 4 (cases), 38 (controls)	Lymphoma location 2 small bowel, 1 bone marrow, and 1 lymph nodes	
N=9,676 (controls)	and outcome measured at the same time • Recruitment <u>Cases</u> Newly diagnosed NHL cases from referral centres in 10 European countries. <u>Controls</u> Individuals screened for CD from the general population, blood donors, or hospital controls • Analysis Logistic regression adjusted for age and sex (unmatched) Power: 0.92		• Lymphoma diagnosis Lymphoma was classified according to Revised European- American Lymphoma Classification		• GFD None in asymptomatic celiac disease	
Catassi et al. (27)(2002) N=653 (NHL) N=5,720 (controls)	Study Design Case-Control F-up: N/A (outcome and exposure measured at the same time) Recruitment Consecutive newly dx NHL of any primary site cases at study sites Controls: Identified from 2 studies on population screening for CD Analysis OR of CD in newly dx NHL calculated by Mantel Haenszel analysis, age and sex-adjusted	 Cases Median age: 57 (20-92) Female: 43% Controls NR 	 CD diagnosis Serology (IgA EMA) confirmed by biopsy Lymphoma diagnosis Lymphoma classified according to site and histology 	 Celiac disease among NHL 2 asymptomatic CD (diagnosed at the same time as NHL) Authors state in a separate publication that the rate of NHL in screening-identified CD (2/653) was lower than expected in the general population (1/100-200) (53) Results in Symptomatic and Asymptomatic CD: OR: 3.1 (1.3, 7.6) AR: 0.6 (-0.12, 1.37) Events: 6 (0.9%) in CD 24 (0.4%) – controls 	 Lymphoma location 1 small bowel and 1 B cell lymphoma of the ileum GFD None in asymptomatic celiac disease 	47% agreed to participate 53% not included due to lack of consent, missing serum sample, o not meeting inclusion criteria

Table 9: Risk of Asymptomatic Celiac Disease in Patients with Newly Diagnosed Lymphoma

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

Study N Follow-up	Study Design Statistical Analysis	Patient Population Symptoms	Celiac disease diagnosis Lymphoma diagnosis criteria	OR (95% Cl) Risk of celiac disease in lymphoma	Site of lymphoma GFD	Participation Rate Withdrawals
Johnston et al. (28) (2000) N=69 (lymphoma) N=1,823 (controls)	Study Design Retrospective case-control F-up: N/A (outcome and exposure measured at the same time) Recruitment Cases: Lymphoma and adenocarcinoma cases retrospectively identified through laboratory database Controls: sample of general population (no details on recruitment provided) Analysis OR of celiac disease in cases vs. controls Confounder adjustment not reported	 Cases Mean age: 60.2 yrs Female: 21.7% Controls General population (no additional details provided) 	 CD diagnosis Small bowel biopsy (according to database records) Lymphoma diagnosis Cases of lymphoma of the small bowel identified through lab database 	 CD in small bowel lymphoma OR: 15.7 (9.7, 25.5) 12 celiac disease diagnosed during 10 years f-up 	 Lymphoma location 12 small bowel lymphoma GFD None in silent cases (celiac disease and NHL diagnosed at the same time) 	Not reported
Farre et al. (29) (2004) N=298 cases / 251 controls	 Study Design Case-control F-up: N/A (outcome and exposure measured at the same time) Recruitment Cases: consecutively newly diagnosed lymphoid malignancy Controls: hospitalized patients matched for age and sex. Analysis Logistic regression matched by age and sex. 	• Cases Mean age: 58 yrs Female: 41.9% • Controls Mean age: 55 yrs Female: 49.4%	 CD diagnosis Serology (IgA tTG and EMA) confirmed by small bowel biopsy Lymphoma diagnosis Lymphoid malignancy diagnosed according to the WHO Classification for Neoplastic Diseases of the Lymphoid Tissues 	 CD in lymphoma Authors reported that there was no increased risk of lymphoma in asymptomatic or symptomatic cases OR 0.62 (0.10 , 3.79) Number of celiac disease patients Cases: 2 (0.7%), 1 asymptomatic Controls: 3 (1.2%), 1 asymptomatic 	Plasma cell myeloma	 298/345 (86.3%) included

CD celiac disease; CI confidence interval; EMA endomysial antibody; f-up follow-up; GFD gluten-free diet; IgA immunoglobulin A; N/A not applicable; NHL non-Hodgkin's lymphoma OR odds ratio; tTG tissue transglutaminase; WHO World Health Organization

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

The Risk of All-Cause Mortality in Patients with Asymptomatic Celiac Disease

A total of 5 studies that evaluated the risk of all-cause mortality in asymptomatic patients with celiac disease were identified. (20-24) There were 5 cohort studies, (20-24) 2 prospective (20;24) and 3 retrospective. (21-23)

In most studies, the risk of all-cause mortality in subjects diagnosed with asymptomatic celiac disease recruited from the general population was compared to that of control subjects with a negative serologic celiac disease test recruited from the general population. The percentage of subjects who declined participation ranged between 10% to 29.4% in two studies, (21;24) there was no information from the other studies. Withdrawal rates were reported in two studies, 4.7% (20) and 0.2%. (23)

The studies are described below. Additional details in table 10.

One prospective cohort study evaluated the risk of all-cause mortality in subjects with asymptomatic celiac disease diagnosed between 1962 and 1994. (20) Celiac disease was diagnosed through small bowel biopsy. (20) The patients were followed for a mean of 6 years, during which all-cause mortality was ascertained through the patients' medical records or through municipal death registries. (20) The standardized mortality ratio (SMR) of the observed rate of mortality in subjects with asymptomatic celiac disease was compared to the expected rate in the general population adjusted for age and sex using Poisson regression. (20) A total of 67 asymptomatic subjects were included in the study, which is the focus of our analysis. (20) Subjects older than 18 years were included. (20) Approximately 76% of the sample size was comprised of women. (20) No increased risk in all-cause mortality was observed, i.e., one death occurred among the asymptomatic celiac disease subjects (expected: 0.8), yielding a SMR of 1.2 (95% CI: 0.2, 7.0, p 0.99). (20) The study also evaluated the risk of all-cause mortality in relatives of subjects with celiac disease. (20) No increase in all-cause mortality was observed in the relatives? group, SMR 0.8 (95% CI: 0.3, 1.7) in fathers, SMR 1.1 (95% CI: 0.3, 2.7) in mothers, SMR 1.1 (95% CI 0.2, 3.3) in brothers, and SMR 0.9 (95% CI: 0.3, 2.1) in sisters of celiac disease patients. (20)

A prospective cohort study by Johnston et al., included subjects who had been recruited for a populationbased cardiovascular study between 1983 and 1995. (24) Celiac disease was diagnosed through serologic tests. (24) The relative risk (RR) of mortality in asymptomatic celiac disease compared to the expected risk in the general population adjusted for age and calendar year was calculated using Poisson regression. (24) A total of 102 subjects were included in the study, 13 of whom had a positive serologic test for celiac disease. (24) The mean age was 60.1 years and 50 (49.0%) were female. (24) After a mean follow-up of 11.6 years, there was no significant increase in the risk of mortality in asymptomatic celiac disease subjects compared to what is expected in the general population, RR 0.92 (95% CI: 0.5, 1.6). (24)

A retrospective cohort study by Lohi et al. included subjects who had been recruited for a populationbased health survey between 1978 and 1980. (21) Celiac disease was diagnosed in asymptomatic subjects if two serologic tests were positive, either 2 IgA tTG tests or both IgA tTG and IgA EMA. (21) Controls were subjects recruited for the same health survey that either had a negative celiac disease serologic test or were only positive to the 1st IgA tTG test. (21) The RR of all-cause mortality in subjects with celiac disease was compared to subjects with a negative serology adjusted for multiple factors using Cox regression. (21) All-cause mortality during a follow-up of up to 28 years was ascertained through a vital records database. Among 6,849 subjects recruited, 204 subjects had two positive IgA tTG tests and 74 had one positive IgA tTG and one positive IgA EMA test, the other subjects were used as controls. (21) These subjects did not present with symptoms consistent with celiac disease. (21) The mean age was 59.1 years (SD 14.2) among subjects who tested positive for IgA tTG and 49.2 years (SD 11.8) for IgA EMApositive subjects. (21) Females comprised 61.5% of the subjects with a positive IgA tTG test and 72% of subjects with a positive IgA EMA test. (21) There was no significant increase in the risk of mortality among subjects with celiac disease compared to controls. (21) There were 128 and 2,941 deaths among IgA tTG-positive subjects and their controls, respectively, RR 1.18 (95% CI 0.99, 1.42). (21) There were 23 and 3,046 deaths among IgA EMA-positive subjects and their controls, respectively, RR 0.91 (95% CI 0.59, 1.38). (21)

A retrospective cohort study by Rubio-Tapia et al. included young men (mean age: 20.5 years, SD 2.5) from a military base recruited for an infectious disease cohort study between 1948 and 1954. (22)Celiac disease was diagnosed through serology, both IgA tTG and IgA EMA-positive. (22) Controls were subjects from the same cohort with a negative serologic test, matched by age, gender, and enlistment status. (22) All-cause mortality during follow-up was ascertained through a vital records database. (22) The hazard ratio (HR) of all-cause mortality in celiac disease compared to patients with a negative serologic test was calculated using Cox proportional hazards analysis. (22) A total of 9,133 subjects were included in the cohort, 14 of which diagnosed with celiac disease. (22) The mean age at recruitment was 20 years. (22) Within a follow-up of 45 years, there were 9 (64.3%) deaths among celiac disease patients, 6 of which of known causes (emphysema, lymphoma, esophageal cancer, cardiovascular disease, 1 not specified), and 2,216 (24.3%) deaths among controls, HR 3.9 (95% CI: 2.0, 7.5). (22) Additionally, information on comorbidities that may be associated with an increased risk of death were not collected or adjusted for in the analysis, which may affect the validity of the study results. The authors believe that the results should be interpreted with caution given the small number of patients diagnosed with celiac disease and the limited adjustment for potential confounders.

A retrospective cohort study by Metzger et al. included subjects recruited for a population-based health survey. (23) Celiac disease was diagnosed through serology, IgA tTG, in asymptomatic subjects. (23) Subjects from the same cohort with a negative serologic test for celiac disease were included as controls. (23) All-cause mortality was ascertained through a vital records database. (23) The HR of all-cause mortality in subjects with asymptomatic celiac disease compared to patients with a negative serologic test was calculated using Cox proportional hazards analysis adjusted for age. (23) A total of 4,663 subjects were included in the cohort, 63 of which were diagnosed with celiac disease. The mean age was 49 years and 49.6% of the subjects were female. (23) There were 15 deaths among subjects with asymptomatic celiac disease and 308 deaths among seronegative subjects during the 8 years of follow-up, HR 2.53 (95% CI: 1.50, 4.25). (23) The authors state that the increased mortality risk should be interpreted with caution as it could be due to false positive serologic test results since confirmation by small bowel biopsy was not performed and more than half of the deaths (8/15) were due to liver disease or heart failure, and there is a possibility of a false positive result in patients with these conditions.

In conclusion, two prospective studies did not show an increased risk of all-cause mortality in subjects with asymptomatic celiac disease.

Table 10: Risk of All-Cause Mortality in Patients with Asymptomatic Celiac Disease

Study N Follow-up	Study Design Statistical Analysis	Patient Population Symptoms	CD diagnosis criteria Outcome and covariates ascertainment	All-Cause Mortality OR, RR, HR, SMR (95% CI) GFD effects	Participation Rate Withdrawals
Corrao et al.(20) (2001) N= 67 asymptomatic CD N= 123 asymptomatic CD (parents and siblings' cohorts) Period: 1962-1998	Study Design Cohort, Multicentre Mean f-up: 6.0 yrs Recruitment <u>CD cases:</u> Consecutive CD diagnosed between 1962-1994 from GI clinics. <u>Relatives' cohorts:</u> subjects diagnosed at gastroenterology clinics. <u>Controls:</u> general population mortality rate used as comparison, age, sex-adjusted Analysis Poisson regression SMR (observed/ expected), age and sex adjusted	 Celiac disease 18 yrs Female: 76% Controls Not applicable 	 CD diagnosis Small bowel biopsy Mortality ascertainment Mortality and covariates ascertained through patient interviews and review of medical records or city registries. Cause defined according to ICD-9 	 All-cause mortality (asymptomatics) SMR 1.2 (0.1, 7.0) Events: 1 (expected: 0.8), p .99 Relatives of CD patients Fathers SMR: 0.8 (0.3, 1.7) Events 7 (expected 8.4) Similar for mothers, brothers and sisters of CD patients GFD effects Adherence and effects in asymptomatics not reported. 	 Participation Rate CD cohort: not reported Relatives cohort: 8/873 (0.9%) Withdrawals CD cohort: 50 (4.7%) Relatives' cohorts: not reported
Johnston et al. (24) (1998) N= 13 asymptomatic CD (1983 cohort) Period: 1983-1995	Study Design Cohort Mean f-up: 11.6 yrs Recruitment Patients randomly identified from the general population for a cardiovascular study were used for this study. <u>CD cases</u> : positive serology <u>Controls:</u> expected mortality rate in the general population, adjusted for age and sex Analysis Observed events compared to expected according to age, calendar yr. Poisson distribution	Celiac disease Mean age: 60.1 yrs Female: 52.8% Controls Not applicable	 CD diagnosis Serology (IgA AGA, ARA, EMA). Small bowel biopsy performed in 20/102 Mortality ascertainment Outcome information obtained from patient interviews and mortality registry 	 All-cause Mortality in subjects with at least 1 positive serologic test RR 0.92 (0.5, 1.6) Events: 13 (expected 14.1) GFD effects Not evaluated 	 30/102 (29.4%) did not participate 52/72 (72.2%) did not do a small bowel biopsy
Lohi et al. (21) (2009) N= 6,849 204 asymptomatic	 Study Design Retrospective cohort F-up: up to 28 yrs Recruitment Patients randomly identified from the general population for a 	• Celiac disease Mean age ± SD: 49.2 ± 11.8 yrs (EMA) 59.1 ± 14.2 yrs (tTG) Female: 72% (EMA)	 CD diagnosis Positive serology in 2 tests. Mortality ascertainment 	• All-cause mortality by serologic test IgA tTG positive RR: 1.18 (0.99, 1.42) Events: 128/204 (CD) 2,941/6,783 (controls)	 10% did not participate in survey 87% with blood sample

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

CD (IgA tTG) 74 asymptomatic CD (IgA EMA) Period: 1978-2005	population-based heart survey were used for this study. CD cases: positive serologic test. Controls: Negative serology or positive only to 1st IgA tTG • Analysis Cox regression, RR adjusted for multiple factors	61.5% (tTG) • Controls Mean age ± SD: 51.1 ± 14.1 yrs Female: 53.7%	Information obtained from medical records and national mortality registry	IgA EMA positive RR: 0.91 (0.59, 1.38) Events: 23 /74 (CD) 3,46/6,913 (controls) • GFD effects Not evaluated	
Rubio-Tapia et al. (22)(2009) Period: 1948-1997 N=9,133	Study Design Retrospective cohort F-up: 45 yrs Recruitment Healthy young men from military base who were part of a cohort study for infectious diseases were used for this study CD cases: positive serologic test Controls: Seronegative for CD Matched for age, gender, enlistment status Analysis Cox proportional hazards adjusted for age, gender, enlistment status	Celiac disease Median age: 20 (14.3-46.4) yrs Female: 0 Controls Not reported	 CD diagnosis Serology, both IgA tTG and IgA EMA positive Mortality ascertainment Vital records database 	 All-cause mortality HR: 3.9 (2.0, 7.5) Events: 9, 6 of known causes: Emphysema (1), lymphoma (1), larynx cancer (1), esophageal cancer (1), CV (1), not specified (1). GFD effects Unknown (authors) 	Not reported
Metzger et al. (23) (2006) N=4,570 CD= 63 (1.4%) Period: 1989-1998	Cases Retrospective cohort Mean f-up: 8.0 (0-8.9) yrs Recruitment Patients randomly identified from the general population for population-based heart survey were used CD cases: positive serologic test for CD Controls: negative serologic test for CD • Analysis Cox proportional hazards adjusted for age	• Celiac disease <u>Mean age:</u> Men: 57.2 (53.1-61.4) yrs Women: 52.8 (46.5-59.0) yrs <u>Female:</u> 49.6% • Controls <u>Mean age:</u> Men: 49.7 (49.2-50.3) yrs Women: 49.2 (48.7-49.8) yrs <u>Female:</u> 49.9%	 CD diagnosis Serology IgA tTG Mortality ascertainment Obtained from vital records database. Covariates obtained from medical records 	• All-cause mortality HR: 2.53 (1.50, 4.25) Events: 15	 N=13 (0.2%) – moved away.

AGA antigliadin antibody; ARA anti-reticulin antibody; CD celiac disease; CI confidence interval; EMA endomysial antibody; f-up follow-up; GFD gluten-free diet; HR hazard ratio; IgA immunoglobulin A; N/A not applicable NHL non-Hodgkin's lymphoma OR odds ratio; RR relative risk; SD standard deviation; SMR standardized mortality ratio; tTG tissue transglutaminase; yr year

Grading of Evidence

The quality of the evidence for each serologic tests evaluated based on the GRADE Working Group criteria. (12)

Overall, the quality of the evidence ranged from low to very low depending on the outcome evaluated. Additional details in tables 11 to 13.

Table 11: GRADE Quality of Evidence: Effects of GFD on Symptoms and Conditions in Subjects with Asymptomatic Celiac Disease

Symptom/Conditi on	Design	Quality	Consistency	Directness	Other Modifying Factors	Summary of Findings	Overall Quality
Type 1 Diabetes Mellitus HbA1c Pediatric	1 prospective case-control study	 Subject selection No serious limitation* CD diagnosis No limitation Measure of outcomes No limitation. Intervention (GFD) No limitation Losses to f-up No serious limitation Blinding of outcome measurement No blinding, however, this may not pose a threat to validity since the outcome was objectively measured 	Not applicable (1 study)	 Patient population No limitations, however it can only be generalized to the pediatric population Outcome No limitations 	 Sparse data No limitation Precision No limitation Publication bias Could not be evaluated 	Significantly lower HbA1c in celiac disease patients with type 1 diabetes vs. control before the diagnosis of celiac disease. After the diagnosis, HbA1c levels in subjects with celiac disease and type 1 diabetes rose to a level similar to that of controls.	
	Low —						Low
Type 1 Diabetes Mellitus (DM1) Hypoglycemia events Pediatric	1 retrospective case-control	 Subject selection Possible selection bias* CD diagnosis No limitation Measure of outcomes (- 1) Retrospectively identified. There were uncertainties on how the events were ascertained and event severity. Intervention (GFD) GFD compliance not provided Losses to f-up No limitation Blinding of outcome measurement No blinding (not applicable, retrospective study) 	Not applicable (1 study)	 Patient population No limitations, however it can only be generalized to the pediatric population Outcome No limitations 	 Sparse data Not considered a serious limitation Precision Not considered a serious limitation Publication bias Could not be evaluated 	No statistically significant difference between cases and controls from 18 months to 6 months before the celiac disease diagnosis and GFD introduction and > 6 months after the GFD introduction. Cases had a statistically significantly higher number of hypoglycemic episodes vs. controls in the period ranging from 6 months prior to 6 months after the celiac disease diagnosis. The severity of episodes among cases and controls was not reported. GFD compliance was not reported.	
	Low	Very Low				<u> </u>	Very Low

Symptom/Conditi on	Design	Quality	Consistency	Directness	Other Modifying Factors	Summary of Findings	Overall Quality
Type 1 Diabetes Mellitus (DM1) Insulin dosage Pediatric	1 prospective case-control study	 Subject selection No serious limitation* CD diagnosis No limitation Measure of outcomes No limitation. Intervention (GFD) No limitation Losses to f-up No serious limitation Blinding of outcome measurement No blinding, however, this may not pose a threat to validity since the outcome was objectively measured 	N/A	 Patient population No limitations, however it can only be generalized to pediatric population Outcome No limitations 	 Sparse data No limitation Precision No limitation Publication bias Could not be evaluated 	No significant difference in insulin dosage between cases and controls either before or after the celiac disease diagnosis. No significant difference in insulin dosage before and after the celiac disease diagnosis among cases.	
	Low					>	Low
Short Stature Growth parameters (growth velocity standard deviation score, height standard deviation score) Pediatric	3 Observational studies (Case Series, before- after comparisons)	 Subject selection Possible selection bias* CD diagnosis No limitation Losses to f-up No limitation Measure of outcomes No limitation Intervention (GFD) GFD compliance not reported. Blinding of outcome measurement No blinding, however, this may not pose a threat to validity since outcomes were objectively measured 	No limitation	 Patient population No limitation Outcome No limitations 	 Precision Not considered a serious limitation Sparse data Not considered a serious limitation Publication bias Could not be evaluated 	All studies reported an improvement in growth parameters once a GFD was introduced.	

Table12: GRADE Quality of Evidence: Risk of Lymphoma in Subjects with Asymptomatic Celiac Disease

Symptom/Con dition	Design	Quality	Consistency	Directness	Other Modifying Factors	Summary of Findings	Overall Quality
Risk of lymphoma among CD subjects without symptoms consistent with the disease	1 cohort study	 Subject selection No limitation CD diagnosis No limitation Losses to f-up No limitation Measure of outcomes No limitation. Blinding of outcome measurement No blinding, however, this was not considered a serious limitation. 	Not applicable (1 study)	 Patient population No limitations. Outcome No limitations 	 Precision Wide confidence intervals. Sparse data (-1) Number of events in each analysis was 2 and 3 respectively. Publication bias Not a limitation 	A non-significant increased risk of NHL was observed if subjects were diagnosed using IgA tTG (RR 2.92, 95% CI: 0.87, 9.74, events: 3), but the risk was significant if IgA EMA was used to diagnose CD (RR 6.43, 95% CI: 1.52, 27.22, # events: 2) Lack of significant differences or discrepancy between the two analyses could be due to small number of events. Statistical power to detect a difference not provided.	
	Low			Low	Very Low		Very Low
Risk of celiac disease without symptoms consistent with the disease in patients with lymphoma	3 case-control studies	 Subject selection No limitation CD diagnosis No limitation Losses to f-up No limitation. Measure of outcomes No limitation Blinding of outcome measurement No blinding, however, this may not pose a threat to validity since outcomes were objectively measured 	No limitation	 Patient population No limitations. Outcome No limitations 	 Precision Wide confidence intervals. Not considered a serious limitation Sparse data No limitation Publication bias Not a limitation 	There was no evidence of a significant increase in the risk of celiac disease without symptoms consistent with the disease in patients with lymphoma.	

CD refers to celiac disease; EMA endomysial antibody; NHL non-Hodgkin lymphoma; RR relative risk; tTG tissue transglutaminase

Table 13: GRADE Quality of Evidence: Risk of Mortality in Subjects with Asymptomatic Celiac Disease

Symptom/Con dition	Design	Quality	Consistency	Directness	Other Modifying Factors	Summary of Findings	Overall Quality
Risk of Mortality in subjects with celiac disease without symptoms consistent with the disease	2 cohort studies	 Subject selection No serious limitation CD diagnosis No limitation Losses to f-up No limitation Measure of outcomes No limitation. Blinding of outcome measurement No blinding, however, this may not considered a serious limitation. 	No limitation	 Patient population No limitation. Outcome No limitation 	 Precision Non-statistically significant results in some studies. Statistical power to detect a difference between groups not reported. Sparse data Not a limitation Publication bias Not a limitation 	There was no evidence of an increase in all-cause mortality in subjects with celiac disease without symptoms consistent with the disease	
	Low						Low

The Clinical Utility of Serologic Testing for Celiac Disease in Asymptomatic Subjects

The clinical utility of serologic testing for celiac disease in asymptomatic patients was assessed based on the effects of the GFD on disease-specific outcomes.

Eligible studies that evaluated the effects of a GFD on disease-specific outcomes were only identified for two conditions, type 1 diabetes and idiopathic short stature.

The clinical utility of serologic testing for celiac disease in patients with type 1 diabetes without symptoms consistent with celiac disease was not demonstrated since the studies identified did not provide evidence of the impact of the GFD on either metabolic control or long-term outcomes in these patients.

The clinical utility of serologic testing for celiac disease in patients with idiopathic short stature without symptoms consistent with celiac disease was demonstrated since the studies identified showed an acceleration in growth once the diagnosis of celiac disease was made and a GFD was introduced.

The Budget Impact of Serologic Testing for Celiac Disease in Asymptomatic Patients

The budget impact of serologic testing for celiac disease in asymptomatic patients was calculated for the conditions for which clinical utility for testing was demonstrated.

The budget impact in patients with idiopathic short stature without symptoms consistent with celiac disease was calculated by multiplying the number of individuals in Ontario that may be eligible for the test by the cost of the serologic test for celiac disease [\$60 for IgA tTG (1)]. The number of individuals eligible for the test was calculated by multiplying the estimated prevalence of idiopathic short stature in the affected age groups by the population in Ontario in those age groups based on the 2006 census data. (54)

The prevalence of short stature was estimated as 1%. According to a publication by Cohen et al., (55) in 60% of the cases, the cause of short stature cannot be identified and it can be considered as idiopathic. Therefore, the prevalence of idiopathic short stature was estimated as 0.6%. It was assumed that children 5 to 14 years old would be most likely to be diagnosed with the disease. Based on the Ontario population of the same age group, it was estimated that approximately 9,200 children with idiopathic short stature in Ontario would be potentially eligible for serologic testing for celiac disease. Assuming a cost per IgA tTG test of \$60, (1) the budget impact of testing 9,200 children in Ontario would be C\$552,000.

Discussion

With the exception of subjects with type 1 diabetes, a review of the literature did not observe a statistically significant increase in the prevalence of asymptomatic celiac disease in subjects presenting with one of the non-gastrointestinal conditions evaluated.

Eligible studies that evaluated the effects of a GFD on disease-specific outcomes were only identified for two conditions: type 1 diabetes and idiopathic short stature. The effects of a GFD were not demonstrated in patients with concomitant type 1 diabetes and asymptomatic celiac disease. Studies in pediatric patients with concomitant idiopathic short stature and asymptomatic celiac disease showed an acceleration of

growth with the introduction of the GFD. The quality of the evidence for these two analyses was considered low. No published evidence of the effects of a GFD in the other non-gastrointestinal conditions evaluated was identified. Therefore, the clinical utility of serologic testing for celiac disease in asymptomatic patients was only demonstrated in pediatric patients with idiopathic short stature.

The studies identified did not show an increased risk of lymphoma in subjects with asymptomatic celiac disease and vice-versa. Similarly, no increased risk of all-cause mortality was observed in asymptomatic subjects with celiac disease.

Conclusion

- Based on a review of the literature, there is an increased risk of asymptomatic celiac disease in subjects with type 1 diabetes.
- Based on low quality evidence, in patients with idiopathic short stature and asymptomatic celiac disease there is an acceleration in growth once a gluten-free diet is introduced.
- With the exception of idiopathic short stature, there was no published evidence of clinical utility of celiac disease testing in asymptomatic patients with respect to a gluten-free diet intervention in the other conditions evaluated.
- Based on low to very low quality evidence, asymptomatic celiac disease does not confer an increased risk of lymphoma or mortality.
- Similarly, in patients with lymphoma there is no increased risk of asymptomatic celiac disease.

Appendices

Appendix 1: Previous OHTAC Recommendations on Serologic Testing for Celiac Disease in Subjects with Symptoms Consistent with this Disease

OHTAC Recommendations (1)

The following recommendations are being made in regards to gastrointestinal indications, unexplained anemia unresponsive to iron supplementation, and dermatitis herpetiformis. OHTAC will make recommendations regarding IgA tTG testing for possible non-gastrointestinal indications and for asymptomatic high risk individuals once the evidence-based analysis for these indications is provided for its consideration.

1. Based on moderate quality evidence for IgA tTG¶, OHTAC supports the use of this serologic test in the diagnosis of celiac disease in subjects with suspicion of celiac disease (see * below),

2. Patients with a negative IgA tTG serologic test with strong suspicion of celiac disease (see * below) with or without IgA deficiency should be referred to a gastroenterologist for consideration of a small bowel biopsy.

3. Individuals with type 1 diabetes mellitus, autoimmune thyroid disease, and first degree relatives of individuals with celiac disease are reported to be at a higher risk of developing celiac disease and there should be a heightened awareness in testing for celiac disease if they meet the criteria listed at * below.

4. In people with a positive serologic test for celiac disease it is recommended that a confirmatory small bowel biopsy be performed.

5. Repeat serologic testing for patients diagnosed with celiac disease is reasonable for those patients who remain symptomatic despite strict adherence to a gluten-free diet. In this case, serologic testing for celiac disease should not be repeated more that once a year for each patient.

* In Adults: chronic diarrhea especially in the presence of weight loss, abdominal pain, and/or unexplained iron-deficiency anemia unresponsive to iron supplementation.

In Pediatrics: Chronic diarrhea especially in the presence of failure to thrive or weight loss; severe constipation especially with poor weight gain.

In Adults and Pediatrics: Unexplained iron deficiency anemia unresponsive to iron supplementation, or subjects with dermatitis herpetiformis.

¶ IgA tTG refers to the immunoglobulin A (IgA) anti-tissue transglutaminase antibody serologic test.

Appendix 2: Literature Search Strategies

Searches performed between December 2010 and March 2011

Ovid MEDLINE(R) 1948 to March Week 3 2011

Search terms used:

exp Alopecia/

exp Alopecia Areata/

alopecia.mp.

(alopecia or (follicular adj3 mucinosis)).mp. [mp=protocol supplementary concept, rare disease supplementary concept, title, original title, abstract, name of substance word, subject heading word, unique identifier]

baldness.mp.

(aphtous adj3 ulcer\$).tw.

(canker adj3 sore\$).tw.

(oral adj3 ulcer\$).tw.

(aphtous adj3 stomatitis).tw.

(mouth adj3 ulcer\$).tw.

exp Oral Ulcer/

exp Stomatitis, Aphthous/

exp Mouth Diseases/ep, et, pa [Epidemiology, Etiology, Pathology]

oral lesions.mp.

exp Mouth Mucosa/pa [Pathology]

lymphoma/ti, ab, de or lymphomas/ti, ab, de or lymphoma!.mp. or hodgkin?/ti, ab, de [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

exp Lymphoma, Non-Hodgkin/ or exp Hodgkin Disease/

malignancy.mp.

cancer.mp. or exp Neoplasms/

exp Mortality/

exp Death/

*Celiac Disease/mo [Mortality]

exp Depression/

exp Depressive Disorder/

depression.mp.

exp Mental Disorders/

exp Diabetes Mellitus, Type 1/

exp Hypoglycemia/

exp Blood Glucose/

exp Diabetes Complications/

exp infertility/

(recurrent adj3 miscarriage).mp. [mp=title, original title, abstract, name of substance word, subject heading word, unique identifier]

exp fertility/

exp pregnancy/

exp pregnancy outcome/

"birth weight"/ exp birth weight/ exp Infant, Low Birth Weight/ exp Motor Neuron Disease/ exp Epilepsy/ Peripheral Nervous System Diseases/ Gluten ataxia.mp exp Muscle Cramp/ exp Paresthesia/ exp Cerebellar Ataxia/ exp Polyneuropathies/ exp Ataxia/ exp Osteoporosis/ exp Bone Diseases, Metabolic/ osteopenia.mp. exp Bone Density/ exp Fractures, Bone/ exp Bone Diseases/ exp Growth Disorders/ short stature.mp. (growth adj3 failure).mp. [mp=protocol supplementary concept, rare disease supplementary concept, title, original title, abstract, name of substance word, subject heading word, unique identifier]

(growth adj3 disorder).mp. [mp=protocol supplementary concept, rare disease supplementary concept, title, original title, abstract, name of substance word, subject heading word, unique identifier]

(growth adj3 retardation).mp. [mp=protocol supplementary concept, rare disease supplementary concept, title, original title, abstract, name of substance word, subject heading word, unique identifier] (delayed adj3 puberty).tw Puberty, delayed/ Exp Amenorrhea/ Amenorrhea.mp exp Purpura, Thrombotic Thrombocytopenic/ or exp Purpura, Thrombocytopenic/ or exp Purpura, or exp Purpura, Thrombocytopenic, Idiopathic/ exp Celiac Disease/

Appendix 3: Prevalence of Celiac Disease in Asymptomatic Patients Presenting with one of the Non-Gastrointestinal Conditions Evaluated

The results of the eligible studies that evaluated the prevalence of celiac disease in asymptomatic patients and one of the non-gastrointestinal conditions evaluated is presented in the tables below.

Table A1: Prevalence of Celiac Disease in Asymptomatic Patients Presenting with Infertility, Recurrent Spontaneous Abortions, and Women with Low Birt	h
Weight Infants	

Study, Country N Follow-up	Study Design Statistical Analysis	Patient Population Symptoms	CD diagnosis criteria	Prevalence of celiac disease among patients with adverse pregnancy outcomes	Participation Rate
Kumar et al. (44) (2011) India N=104 (history of recurrent abortion) N= 230 (infertility) N=150 (women with low birth weight infants) N= 350 (controls)	 Study Design Cross-sectional Inclusion Criteria Cases: Consecutive women with recurrent abortion, infertility, low birth weight infants unexplained by another cause who attended the hospital clinic. Controls: women with normal obstetric history who attended the outpatient clinic of the same hospital 	 Mean Age ± SD Recurrent spontaneous abortion: 26.5 ± 3.8 yrs Women with low birth weight infants: 28.3 ± 4.0 yrs Infertility: 29.7 ± 4.6 yrs Control: 27.8 ± 4.5 yrs Symptoms <u>Anemia</u> Recurrent spontaneous abortion: 86 (82.7%) Women with low birth weight infants: 123 (82%) Infertility: 78 (33.9%) Control: 144 (47.2%) Only CD cases without anemia were included in the analysis 	• Serology IgA tTG	Recurrent Spontaneous abortions• CD Cases (without anemia) 2/18 (11.1%)Infertility• CD Cases (without anemia) 9/152 (5.9%)Women with Low Birth Weight Infants• CD Cases (without anemia) 5/27 (18.5%)Controls • CD Cases (without anemia) 3/161 (1.9%)p value not provided for subgroup of patients without anemia.	Participation Rate 8.7% - 19.2% depending on the study group due to lack of consent of presence of inclusion criteria
Kolho et al. (45)(1999) Finland N= 63 (unexplained recurrent miscarriage) N=47 (unexplained infertility) N= 51 (controls)	Study Design Cross-sectional Inclusion criteria Cases: Women with unexplained recurrent (≥3 consecutive) miscarriages and infertility (unexplained in some) with blood sample available. Controls: hospital personnel without reproductive	Median age (range) Unexplained recurrent miscarriage: 34 (20-44) yrs Unexplained infertility: 36 (27-41) yrs Controls: 35 (25-43) yrs Symptoms None reported	• Serology IgA EMA	Recurrent unexplained miscarriage • CD Cases 1/63 (1.6%) Unexplained infertility • CD Cases 1/47 (2.1%) Controls • CD Cases	Not reported.

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

	problems			1 (2.0%) Difference NS for both outcomes	
Collin et al. (46)(1996) Finland	Study Design Cross-sectional	Median age (range) Unexplained infertility: 31 (22-42) yrs	 Serology IgA AGA or ARA, 	 ≥ 2 miscarriages CD Cases 0 	Not reported
N=98 (unexplained infertility) N=50 (≥ 2 spontaneous abortions)	 Inclusion criteria Cases Consecutive cases of infertility and ≥ 2 	Miscarriages: 31 (22-46) yrs Control: 38 (26-45) yrs	confirmed by biopsy	 Unexplained infertility CD Cases (among asymptomatic women) 	
N=150 (control)	spontaneous abortions Controls Women with a normal	• Symptoms (among CD cases) 2/4 (50%) silent		2 (2.0%)	
	obstetric history who underwent a laparoscopic sterilization			0 p value not provided	

AGA anti-gliadin antibody; ARA anti-reticulin antibody; CD celiac disease; EMA endomysial antibody; IgA immunoglobulin A; NR not reported; NS not statistically significant; SD standard deviation; tTG tissue transglutaminase; yr year

Table A2: Prevalence of Celiac Disease in Asymptomatic Patients Presenting with Epilepsy

Study Country N	Study Design Recruitment	Patient Population Participation Rate	% positive serology, biopsy IgA tTG IgG EMA	% positive small bowel biopsy
Antigoni et al. (47) (2007) Greece	Study design Cross-sectional Recruitment	• Patient characteristics Cases Mean age: 7.9 (2-14) yrs Girls: 118 (46.3%)	• IgA tTG Epilepsy: 2 (0.8%) Controls: 0	• Small bowel biopsy 2/255 (0.8%) Controls: not done
N=255 idiopathic epilepsy N= 280 controls Pediatric	Cases: Patients being followed at the Neurology outpatient clinic. Controls: healthy children seen at the pediatric outpatient clinic for a routine	<u>Controls</u> Mean age: 7.5 (2-14) yrs Girls: 135 (48.2%)	• IgA EMA Epilepsy: 0 Controls: 0	
	evaluation	 Participation rate Not reported 	p value not provided	
Dalgic et al. (48) (2005) Turkey N= 170 idiopathic epilepsy N= 103 controls Children	 Study design Cross-sectional Recruitment Cases: Children with idiopathic epilepsy Controls: healthy children seen at the pediatric outpatient clinic for a routine evaluation 	 Patient characteristics <u>Cases</u> Mean age ± SD: 9.8 ± 4.6 yrs Girls: 75 (44.1%) <u>Controls</u> Mean age ± SD: 9.9 ± 3.6 yrs Girls: 105 (51.7%) Participation rate Not reported 	• IgA tTG Epilepsy: 8 (4.7%) Controls: 0 p .026	• Small bowel biopsy 2/170 (1.2%) Controls: not performed
Pratesi et al. (49) (2003) Brazil N= 255 epilepsy (119 children, 136 adults) N=4,405 controls Adults and children	Study design Cross-sectional Recruitment Cases: Adults and children attending an epilepsy clinic clinic Controls: individuals attending the medical laboratory of the same hospital	Patient characteristics <u>Cases</u> Mean age, children: 8.0 (1- 14) yrs Mean age, adults: 30.3 (15- 65) yrs <u>Controls</u> Not reported Participation rate Not reported	• IgA EMA Children: 1/119 (0.8%) Adults: 1/136 (0.7%) Controls: 15/4405 (0.3%) NS	Not reported
Ranua et al. (50) (2005) Finland N=968 epilepsy (not only idiopathic) N=1,386 controls Adults	 Study design Cross-sectional Recruitment Cases: Adults treated for epilepsy at the study hospital. Controls: age- and gender matched individuals from the general population 	• Patient characteristics <u>Cases</u> Mean age±SD: 46.4 ± 15.7 yrs Mean duration of epilepsy: 15.2 ± 11.9 yrs Female: 472 (48.8%) <u>Controls:</u> not reported • Participation rate 968 (70%)	 IgA EMA 15/853 (1.8%) Controls: 13/574 (2.3%) p=.5 IgA tTG 20/853 (2.3%) Controls: 14/574 (2.4%) p 0.9 	Not reported

EMA endomysial antibody; IgA immunoglobulin A; NR not reported; NS not statistically significant; SD standard deviation; tTG tissue transglutaminase; yr year

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

Table A3: Prevalence of Celiac Disease in Asymptomatic Patients Presenting with Peripheral Neuropathy

Study Country N	Study Design Recruitment	Patient Population Symptoms	% positive serology IgA tTG, IgG EMA	% positive small bowel biopsy
Lock et al. (51) (2005) UK N=32 peripheral neuropathy	 Study design Cross-sectional Recruitment Recruited at the neurology department 	 Patient characteristics Mean age: 66 (32-86) yrs Participation rate Not reported 	• IgA tTG 0	Not evaluated
Adults				

CD celiac disease; EMA endomysial antibody; IgA immunoglobulin A; NS not statistically significant; tTG tissue trasnglutaminase; yr year

Table A4: Prevalence of Celiac Disease in Asymptomatic Patients Presenting with Ataxia

Study Country N	Study Design Recruitment	Patient Population Symptoms	% positive serology IgA tTG IgA EMA	% positive small bowel biopsy
Abele et al. (43) (2003) Germany N=105 (32 sporadic adult-onset ataxia of unknown origins , 73 controls) Adults	 Study design Cross-sectional Recruitment Cases: recruited at the neurology department Controls: age- and gender-matched, recruitment process unclear 	• Patient characteristics <u>Cases</u> Mean age \pm SD: 55 \pm 14 yrs Mean disease duration \pm SD:11 \pm 11 yrs Female: 13 (40.6%) <u>Controls</u> Mean age \pm SD: 53 \pm 14 yrs Female: 34 (46.6%)	• IgA EMA 1/32 (3.1%) Controls: 1/73 (1%) NS	Not evaluated
Addito		Participation rate Not reported		

CD celiac disease; EMA endomysial antibody; IgA immunoglobulin A; NS not statistically significant; SD standard deviation; yr year

Table A5: Prevalence of Celiac Disease in Asymptomatic Patients Presenting with Idiopathic Short Stature

Study Country N	Study Design Recruitment	Patient Population Symptoms	CD diagnosis criteria Short Stature definition	Prevalence of CD
Cacciari et al. (14)(1985) Italy N= 104 short stature	 Study design Case Series / Before-after (cross-sectional evaluation of prevalence) F-up: 3 to 33 mos Recruitment All children with short stature and no GI symptoms who attended the pediatric clinic and had a small bowel biopsy done. 	 Patient Characteristics Idiopathic short stature: 88/104 (84.6%) Mean age: 9.4 to 13.4 (2.8- 16.8) yrs Bone age delay (% of chronologic age): 16.6% - 28.2% Participation rate Not reported 	 CD diagnosis Serology (AGA) confirmed by small bowel biopsy Short stature definition < 3rd percentile 	• % patients with CD 16 (15.4%)
Stenhammar et al. (42)(1986) Sweden N=87 short stature	 Study design Case series (cross-sectional evaluation of prevalence) Recruitment Children with short stature without GI symptoms. 	 Patient Characteristics <u>Median age</u>: 9.5 yrs (1.0-16.5) <u>Mean height</u> SD: 2.7 (2.0-5.0) <u>Mean weight</u> SD: 2.5 (1.0-6.0) Participation rate Not reported 	 CD diagnosis Small bowel biopsy Short stature definition Height > 2 SD below the mean for age and gender 	• % patients with CD 2/87 (2.3%)
Groll et al. (30)(1980) England N=34 short stature of no endocrine cause	 Study design Case Series (cross-sectional evaluation of prevalence) Recruitment Children with short stature and no GI symptoms referred to the gastroenterology clinic 	 Patient Characteristics Age: 2.5 to 17.0 yrs Participation rate Not reported 	 CD diagnosis Serology (unclear which) confirmed by biopsy Short stature definition Height 2 SD below mean height for age 	• % patients with CD 8/34 (23.5%)
Tumer et al. (31)(2001) Turkey N=84 short stature without cause	 Study design Cross-sectional Recruitment Children with short stature without GI symptoms. 	 Patient Characteristics Age: 16 mos to 14 yrs Female: 46 (54.8%) Participation rate Not reported 	 CD diagnosis IgA EMA confirmed by biopsy Short stature definition Height < 3rd percentile for age 	• % patients with CD 7 (8.3%)

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

Study Country N	Study Design Recruitment	Patient Population Symptoms	CD diagnosis criteria Short Stature definition	Prevalence of CD
Rossi et al. (32)(1993) United States	Study design Cross-sectional Recruitment	Patient Characteristics Age: 2 to 17 yrs	CD diagnosis IgA EMA confirmed by small bowel biopsy	• % patients with CD 2 (1.7%)
N=117 short stature	Children with short stature seen at the endocrinology clinic.	Participation rate Not reported	 Short stature definition Height < 3rd percentile for age 	
Giovenale et al.	Study design	Patient Characteristics	CD diagnosis	• % patients with CD
(33)(2006) Italy	Cross-sectional • Recruitment Children with short stature seen at	Age: 2 to 14 yrs Female: 2826 (40.0%)	IgA EMA, tTG confirmed by biopsy	44 (0.63%)
N= 7066 short stature	 Exclusion criteria Exclusion criteria Excludes subjects with thyroid or adrenal function abnormalities 	Participation rate Not reported	Short stature definition Not defined	

AGA refers to anti-gliadin antibody; CD celiac disease; EMA endomysial antibody; f-up follow-up; GFD gluten-free diet;GI gastrointestinal; IgA immunoglobulin A; mos months; NS not statistically significant; SD standard deviation; tTG tissue trasnglutaminase; yr year

 Table A6: Prevalence of Asymptomatic Celiac Disease in Patients with Osteopenia or Osteoporosis

Study Country N	Study Design Recruitment	Patient Population Symptoms	CD diagnosis criteria Osteopenia/Osteoporosis definition	Prevalence of Celiac Disease
Armagan et al. (34) (2005) Turkey N=89 premenopausal women with idiopathic low BMD N=76 controls Adults	 Study Design Cross-sectional Recruitment No details on recruitment. Premenopausal, idiopathic low BMD, normal calcium levels Control: healthy premenopausal women without osteoporosis Exclusion Criteria Conditions and medications that affect bone metabolism Diseases associated with CD Use of calcium (> 1.5 g/d) or vitamin D (> 800 IU/d) among others 	 Patient Population <u>Mean Age</u> Low BMD: 36.0 (25-44) Control: 35.0 (25-45) <u>Female:</u> 100% (low BMD and controls) Participation rate Not reported 	 CD diagnosis Serology (IgA AGA, IgA EMA if AGA positive) Low BMD definition BMD lumbar spine ≥ 2.5 SD below the young adult mean 	• IgA EMA 9 (10.1%) Control: 0 p value not provided
Gonzalez et al. (35)(2002) Argentina N=127 postmenopausal, osteoporotic women N= 747 controls (not age-matched)	 Study Design Cross-sectional Recruitment Consecutive postmenopausal, osteoporotic women Control: from population-based study, not age-matched Exclusion Criteria Not reported 	Patient Population <u>Mean age</u> Osteoporosis: 68 (50-82) yrs Control: 29 (16-79) yrs) Female: 100% (osteoporosis and controls) Participation rate Not reported	CD diagnosis Serology (IgA or IgG AGA, IgA EMA if AGA positive) Confirmed by biopsy Osteoporosis definition ≥ 1 nontraumatic fracture and/or femoral neck BMD T-score < 2.5	• IgA EMA 1 (0.8%) Control: 6 (0.8%) p value not provided
Vancikova et al. (36) (2002) Czech Republic N=102 osteoporosis N=1,312 controls Adults	 Study Design Cross-sectional Recruitment Recruitment method not reported. Patients with primary osteoporosis included. Controls: blood donors Exclusion Criteria Secondary causes of osteoporosis. 	 Patient Population <u>Mean age</u> Osteoporosis: 64 (45-85) yrs Controls: 35 (18-60) yrs <u>Female</u> Osteoporosis: 97 (95.1%) Control: 523 (39.9%) Participation rate Not reported 	 CD diagnosis Serology (IgA, IgG AGA, igA tTG, EMA) Osteoporosis definition Not reported 	 IgA tTG 7 (6.9%) Controls: 92 (7.0%) IgA EMA 1 (1.0%) Controls: 6 (0.5%) p value not provided

AGA refers to anti-gliadin antibody; BMD bone mineral density; CD celiac disease; EMA endomysial antibody; f-up follow-up; IgA immunoglobulin A; mos months; SD standard deviation; tTG tissue trasnglutaminase; yr year

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

Table A7: Prevalence of Asymptomatic Celiac Disease in Patients with Recurrent Aphtous Stomatitis

Study Country N	Study Design Recruitment	Patient Population Symptoms	CD diagnosis criteria Aphtous Stomatitis definition	Prevalence of CD
Aydemir et al. (37)(2004)	Study design	Patient Population	CD diagnosis	• IgA EMA
Turkey	Cross-sectional	Mean Age ± SD	Serology (IgA AGA, IgA EMA),	RAŠ: 2 (4.8%)
	Recruitment	RAS: 40.0 ± 10.8 yrs	confirmed by small bowel	Control: 0
N=41 Recurrent aphtous	Patients with RAS presenting at the	Controls: 38.0 ± 12.9 yrs	biopsy	
stomatitis (RAS)	dermatology and family practice clinics.			 Small bowel biopsy
N= 49 controls	Controls: patients referred to the	<u>Female</u>	 Recurrent aphtous 	RAS: 2 (4.8%)
	gastroenterology out-patient clinic for	23 (56%)	stomatitis (RAS) diagnosis	Control: 0
Adults and children	reasons other than RAS		History and physical	
	Exclusion Criteria Not reported	 Participation Rate Not reported 	examination	p value not provided

AGA refers to anti-gliadin antibody; CD celiac disease; EMA endomysial antibody; IgA immunoglobulin A; RAS recurrent aphtous stomatitis; SD standard deviation; tTG tissue transglutaminase; yr year

 Table A8: Prevalence of Asymptomatic Celiac Disease in Patients with Type 1 Diabetes

Study Country N	Study Design Recruitment	Patient Population Symptoms	Celiac Disease (CD) diagnosis criteria	Prevalence of CD
Djuric et al. (38)(2010) Serbia N=121 type 1 diabetes N=125 controls Pediatric	 Study design Cross-sectional, controlled Recruitment Patients followed at a hospital clinic Controls: healthy children and adolescents – details on recruitment not reported Exclusion Criteria - Not reported 	 Patient Population <u>Mean Age</u> Type 1 diabetes: 10.8 (2-18) yrs Controls: 10.4 yrs (2-18) yrs <u>Girls</u> Type 1 diabetes: 70 (57.9%) Controls: 68 (54.4%) <u>Mean diabetes duration ± SD</u> 3.6 ± 3.6 yrs Participation Rate Not reported 	CD diagnosis Serology (IgA tTG) confirmed by small bowel biopsy	 IgA tTG Type 1 diabetes: 5 (4.1%) – among asymptomatic Controls: 1 (0.8%) P < .05 (considering 7 pts, 2 symptomatic in type 1 diabetes group) Small bowel biopsy 5 (4.1%), 2 refused biopsy Losses to f-up 2/9 (22.2%) did not agree to biopsy with positive IgA tTG
Sari et al. (39) (2010) Turkey N=48 type 1 diabetes N=103 controls Pediatric	 Study design Cross-sectional, controlled Recruitment Children with type 1 diabetes – recruitment method not reported Controls:, and healthy children and adolescents without type 1 diabetes– details on recruitment not reported Exclusion Criteria Not reported 	 Patient Population <u>Mean Age</u> Type 1 diabetes: 12.1 (3.5-23) yrs Controls: 12.2 (3.5-17) yrs <u>Girls Type 1 diabetes: 30 (62.5%) <u>Mean diabetes duration ± SD Not reported </u></u> Participation Rate Not reported 	CD diagnosis Serology (IgA tTG) , confirmed by small bowel biopsy	 IgA tTG Type 1 diabetes: 10 (20.8%) Healthy controls: 0 p .00005 Small bowel biopsy Type 1 diabetes: 3 (6.3%) – only 8 accepted to do biopsy (5 had normal mucosa) Healthy controls: not performed
Soyucen et al. (40)(2010) Turkey N=33 type 1 diabetes N=41 controls Pediatric	 Study design Cross-sectional, controlled Recruitment Children with type 1 diabetes – recruitment method not reported Controls: non-diabetic children– details on recruitment not reported Exclusion Criteria Other acute or chronic diseases IgA deficiency 	 Patient Population <u>Mean Age ± SD</u> Type 1 diabetes: 10.0 ± 3.5 yrs Controls: 9.1 ± 3.1 yrs <u>Girls</u> Type 1 diabetes: 19 (57.6%) Controls: 18 (43.9%) <u>Mean diabetes duration ± SD</u> 2.0 (0.5-7) yrs Participation Rate Not reported 	• CD diagnosis Serology (IgA EMA)	• IgA EMA Type 1 diabetes: 3 (9.1%) Controls: 0 p< .05

Celiac Disease Testing in Asymptomatic Patients – OHTAS 2011;11(3)

Page 58

Study Country N	Study Design Recruitment	Patient Population Symptoms	CD diagnosis criteria Short Stature definition	Prevalence of CD
Altintas et al. (41) (1985) Turkey	Study design Cross-sectional (prevalence evaluation) Recruitment	Patient Characteristics Mean age: cITP: 33.7 (16-83) yrs	CD diagnosis Serology: IgA and IgG AGA, IgA and IgG EMA	• IgA EMA cITP: 2 (2.7%) Controls: 1 (0.6%)
N= 74 chronic idiopathic thrombocytopenic purpura	Patients with cITP were included, no	Controls: 33.2 (18-71) yrs	5 5	NS
(cITP)	details on recruitment. Controls: age- and sex-matched	Female	 cITP definition Not defined 	
N=162 controls	healthy controls.	cITP: 57 (77%) controls: 123 (76%)		
Δdults				

Table A9: Prevalence of Asymptomatic Celiac Disease in Chronic Idiopathic Thrombocytopenia Purpura

Adults

AGA refers to anti-gliadin antibody; CD celiac disease; cITP chronic idiopathic thrombocytopenic purpura; EMA endomysial antibody; IgA immunoglobulin A; NS not statistically significant

References

- Medical Advisory Secretariat. Clinical utility of serologic testing for celiac disease in Ontario: an evidence-based analysis. Toronto, ON: Medical Advisory Secretariat. 2010 Jan 12 111 p. Ont Health Technol Assess Ser [Internet] 10(21). Available from: http://www.health.gov.on.ca/english/providers/program/mas/tech/reviews/pdf/rev_celiac_201012 10.pdf
- (2) Ontario Health Technology Advisory Committee. Clinical utility of serologic testing for celiac disease in Ontario. OHTAC recommendation [Internet]. Toronto, Ontario: Ministry of Health and Long-Term Care. 2011 Jan 12 9 p. Available from: <u>http://www.health.gov.on.ca/english/providers/program/ohtac/tech/recommend/rec_celiac_20101_210.pdf</u>
- (3) Green PH, Cellier C. Celiac disease. N Engl J Med 2007; 357(17):1731-43.
- (4) Rostom A, Murray JA, Kagnoff MF. American Gastroenterological Association (AGA) Institute technical review on the diagnosis and management of celiac disease. Gastroenterology 2006; 131(6):1981-2002.
- (5) Rostom, A., Dube, C., Cranney, A., Saloojee, N., Sy, R., and Garritty, C. Celiac disease [Internet]. Rockville, MD: Agency for Healthcare Research and Quality. 2004 [cited: 2010 Mar 3]. 183 p. Available from: <u>http://www.ahrq.gov/clinic/tp/celiactp.htm</u>
- (6) AGA Institute. AGA Institute Medical Position Statement on the Diagnosis and Management of Celiac Disease. Gastroenterology 2006; 131(6):1977-80.
- (7) Hill ID, Dirks MH, Liptak GS, Colletti RB, Fasano A, Guandalini S et al. Guideline for the diagnosis and treatment of celiac disease in children: recommendations of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. J Pediatr Gastroenterol Nutr 2005; 40(1):1-19.
- (8) Revised criteria for diagnosis of coeliac disease. Report of Working Group of European Society of Paediatric Gastroenterology and Nutrition. Arch Dis Child 1990; 65(8):909-11.
- (9) National Institute for Health and Clinical Excellence. Coeliac disease: recognition and assessment of coeliac disease [Internet]. London: National Institute for Health and Clinical Excellence. 2009 [cited: 2010 Mar 4]. 86 p. Clinical Practice Guideline 86. Available from: <u>http://guidance.nice.org.uk/CG86/Guidance</u>
- (10) Health Canada. Medical devices active licenses [Internet]. [updated 2009 Feb 19; cited 2010 Mar 11]. Available from: <u>http://webprod.hc-sc.gc.ca/mdll-limh/start-debuter.do?lang=eng</u>
- (11) Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, onso-Coello P et al. GRADE guidelines: 4. Rating the quality of evidence--study limitations (risk of bias). J Clin Epidemiol 2011; 64(4):407-15.
- (12) Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S et al. Grading quality of

Celiac Disease Testing in Asymptomatic Patients - OHTAS 2011;11(3)

evidence and strength of recommendations. BMJ 2004; 19;328(7454):1490.

- (13) Bonamico M, Scire G, Mariani P, Pasquino AM, Triglione P, Scaccia S et al. Short stature as the primary manifestation of monosymptomatic celiac disease. J Pediatr Gastroenterol Nutr 1992; 14(1):12-6.
- (14) Cacciari E, Salardi S, Volta U, Biasco G, Lazzari R, Corazza GR et al. Can antigliadin antibody detect symptomless coeliac disease in children with short stature? Lancet 1985; 1(8444):1469-71.
- (15) Cacciari E, Corazza GR, Salardi S, Pascucci MG, Tacconi M, Cicognani A et al. What will be the adult height of coeliac patients? Eur J Pediatr 1991; 150(6):407-9.
- (16) Mohn A, Cerruto M, Iafusco D, Prisco F, Tumini S, Stoppoloni O et al. Celiac disease in children and adolescents with type I diabetes: importance of hypoglycemia. J Pediatr Gastroenterol Nutr 2001; 32(1):37-40.
- (17) Sun S, Puttha R, Ghezaiel S, Skae M, Cooper C, Amin R et al. The effect of biopsy-positive silent coeliac disease and treatment with a gluten-free diet on growth and glycaemic control in children with Type 1 diabetes. Diabet Med 2009; 26(12):1250-4.
- (18) Goh VL, Estrada DE, Lerer T, Balarezo F, Sylvester FA. Effect of gluten-free diet on growth and glycemic control in children with type 1 diabetes and asymptomatic celiac disease. J Pediatr Endocrinol Metab 2010; 23(11):1169-73.
- (19) Valletta E, Ulmi D, Mabboni I, Tomasselli F, Pinelli L. Early diagnosis and treatment of celiac disease in type 1 diabetes. A longitudinal, case-control study. Pediatr Med Chir 2007; 29(2):99-104.
- (20) Corrao G, Corazza GR, Bagnardi V, Brusco G, Ciacci C, Cottone M et al. Mortality in patients with coeliac disease and their relatives: a cohort study. Lancet 2001; 358(9279):356-61.
- (21) Lohi S, Maki M, Rissanen H, Knekt P, Reunanen A, Kaukinen K. Prognosis of unrecognized coeliac disease as regards mortality: a population-based cohort study. Ann Med 2009; 41(7):508-15.
- (22) Rubio-Tapia A, Kyle RA, Kaplan EL, Johnson DR, Page W, Erdtmann F et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 2009; 137(1):88-93.
- (23) Metzger MH, Heier M, Maki M, Bravi E, Schneider A, Lowel H et al. Mortality excess in individuals with elevated IgA anti-transglutaminase antibodies: the KORA/MONICA Augsburg cohort study 1989-1998. Eur J Epidemiol 2006; 21(5):359-65.
- (24) Johnston SD, Watson RG, McMillan SA, Sloan J, Love AH. Coeliac disease detected by screening is not silent--simply unrecognized. QJM 1998; 91(12):853-60.
- (25) Mearin ML, Catassi C, Brousse N, Brand R, Collin P, Fabiani E et al. European multi-centre study on coeliac disease and non-Hodgkin lymphoma. Eur J Gastroenterol Hepatol 2006; 18(2):187-94.
- (26) Lohi S, Maki M, Montonen J, Knekt P, Pukkala E, Reunanen A et al. Malignancies in cases with screening-identified evidence of coeliac disease: a long-term population-based cohort study. Gut 2009; 58(5):643-7.

Celiac Disease Testing in Asymptomatic Patients - OHTAS 2011;11(3)

- (27) Catassi C, Fabiani E, Corrao G, Barbato M, De RA, Carella AM et al. Risk of non-Hodgkin lymphoma in celiac disease. JAMA 2002; 287(11):1413-9.
- (28) Johnston SD, Watson RG. Small bowel lymphoma in unrecognized coeliac disease: a cause for concern? Eur J Gastroenterol Hepatol 2000; 12(6):645-8.
- (29) Farre C, Domingo-Domenech E, Font R, Marques T, Fernandez de SA, Alvaro T et al. Celiac disease and lymphoma risk: a multicentric case--control study in Spain. Dig Dis Sci 2004; 49(3):408-12.
- (30) Groll A, Candy DC, Preece MA, Tanner JM, Harries JT. Short stature as the primary manifestation of coeliac disease. Lancet 1980; 2(8204):1097-9.
- (31) Tumer L, Hasanoglu A, Aybay C. Endomysium antibodies in the diagnosis of celiac disease in short-statured children with no gastrointestinal symptoms. Pediatr Int 2001; 43(1):71-3.
- (32) Rossi TM, Albini CH, Kumar V. Incidence of celiac disease identified by the presence of serum endomysial antibodies in children with chronic diarrhea, short stature, or insulin-dependent diabetes mellitus. J Pediatr 1993; 123(2):262-4.
- (33) Giovenale D, Meazza C, Cardinale GM, Sposito M, Mastrangelo C, Messini B et al. The prevalence of growth hormone deficiency and celiac disease in short children. Clinical Medicine and Research 2006; 4(3):180-3.
- (34) Armagan O, Uz T, Tascioglu F, Colak O, Oner C, Akgun Y. Serological screening for celiac disease in premenopausal women with idiopathic osteoporosis. Clin Rheumatol 2005; 24(3):239-43.
- (35) Gonzalez D, Sugai E, Gomez JC, Oliveri MB, Gomez AC, Vega E et al. Is it necessary to screen for celiac disease in postmenopausal osteoporotic women? Calcif Tissue Int 2002; 71(2):141-4.
- (36) Vancikova Z, Chlumecky V, Sokol D, Horakova D, Hamsikova E, Fucikova T et al. The serologic screening for celiac disease in the general population (blood donors) and in some highrisk groups of adults (patients with autoimmune diseases, osteoporosis and infertility) in the Czech republic. Folia Microbiol (Praha) 2002; 47(6):753-8.
- (37) Aydemir S, Tekin NS, Aktunc E, Numanoglu G, Ustundag Y. Celiac disease in patients having recurrent aphthous stomatitis. Turk J Gastroenterol 2004; 15(3):192-5.
- (38) Djuric Z, Stamenkovic H, Stankovic T, Milicevic R, Brankovic L, Ciric V et al. Celiac disease prevalence in children and adolescents with type 1 diabetes from Serbia. Pediatr Int 2010; 52(4):579-83.
- (39) Sari S, Yesilkaya E, Egritas O, Bideci A, Cinaz P, Dalgic B. Prevalence of Celiac disease in Turkish children with type 1 diabetes mellitus and their non-diabetic first-degree relatives. Turk J Gastroenterol 2010; 21(1):34-8.
- (40) Soyucen E, Yilmaz S, Celtik C, Vatansever U, Oner N, Karasalihoglu S. Seroprevalence of autoimmune thyroiditis and celiac disease in children with insulin-dependent diabetes mellitus in the Thrace region of Turkey. Turk J Gastroenterol 2010; 21(3):231-5.
- (41) Altintas A, Pasa S, Cil T, Bayan K, Gokalp D, Ayyildiz O. Thyroid and celiac diseases

Celiac Disease Testing in Asymptomatic Patients - OHTAS 2011;11(3)

autoantibodies in patients with adult chronic idiopathic thrombocytopenic purpura. Platelets 2008; 19(4):252-7.

- (42) Stenhammar L, Fallstrom SP, Jansson G, Jansson U, Lindberg T. Coeliac disease in children of short stature without gastrointestinal symptoms. Eur J Pediatr 1986; 145(3):185-6.
- (43) Abele M, Schols L, Schwartz S, Klockgether T. Prevalence of antigliadin antibodies in ataxia patients. Neurology 2003; 60(10):1674-5.
- (44) Kumar A, Meena M, Begum N, Kumar N, Gupta RK, Aggarwal S et al. Latent celiac disease in reproductive performance of women. Fertil Steril 2011; 95(3):922-7.
- (45) Kolho KL, Tiitinen A, Tulppala M, Unkila-Kallio L, Savilahti E. Screening for coeliac disease in women with a history of recurrent miscarriage or infertility. Br J Obstet Gynaecol 1999; 106(2):171-3.
- (46) Collin P, Vilska S, Heinonen PK, Hallstrom O, Pikkarainen P. Infertility and coeliac disease. Gut 1996; 39(3):382-4.
- (47) Antigoni M, Xinias I, Theodouli P, Karatza E, Maria F, Panteliadis C et al. Increased prevalence of silent celiac disease among Greek epileptic children. Pediatr Neurol 2007; 36(3):165-9.
- (48) Dalgic B, Dursun I, Serdaroglu A, Dursun A. Latent and potential celiac disease in epileptic Turkish children. J Child Neurol 2006; 21(1):6-7.
- (49) Pratesi R, Gandolfi L, Martins RC, Tauil PL, Nobrega YK, Teixeira WA. Is the prevalence of celiac disease increased among epileptic patients? Arq Neuropsiquiatr 2003; 61(2B):330-4.
- (50) Ranua J, Luoma K, Auvinen A, Maki M, Haapala AM, Peltola J et al. Celiac disease-related antibodies in an epilepsy cohort and matched reference population. Epilepsy and Behavior 2005; 6(3):388-92.
- (51) Lock RJ, Pengiran Tengah DS, Unsworth DJ, Ward JJ, Wills AJ. Ataxia, peripheral neuropathy, and anti-gliadin antibody. Guilt by association? J Neurol Neurosurg Psychiatry 2005; 76(11):1601-3.
- (52) Goodman C. Literature searching and evidence interpretation for assessing health care practices. Stockholm, Sweden: The Swedish Council on Technology Assessment in Health Care. 1993 81 p. SBU-Report No 119E.
- (53) Catassi C, Bearzi I, Holmes GK. Association of celiac disease and intestinal lymphomas and other cancers. Gastroenterology 2005; 128(4:Suppl 1):Suppl-86.
- (54) Statistics Canada. Census 2006. Population data by age and sex, province of Ontario. [Internet]. [updated 2011 Apr 7; cited 2011 Jun 29]. Available from: <u>http://www12.statcan.gc.ca/census-recensement/2006/dp-pd/tbt/index-eng.cfm</u>
- (55) Cohen P, Rogol AD, Deal CL, Saenger P, Reiter EO, Ross JL et al. Consensus statement on the diagnosis and treatment of children with idiopathic short stature: a summary of the Growth Hormone Research Society, the Lawson Wilkins Pediatric Endocrine Society, and the European Society for Paediatric Endocrinology Workshop. J Clin Endocrinol Metab 2008; 93(11):4210-7.